Skip to main content

Advertisement

Log in

Molecular pathology as basis for timely cancer diagnosis and therapy

  • REVIEW AND PERSPECTIVES
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Precision and personalized therapeutics have witnessed significant advancements in technology, revolutionizing the capabilities of laboratories to generate vast amounts of genetic data. Coupled with computational resources for analysis and interpretation, and integrated with various other types of data, including genomic data, electronic medical health (EMH) data, and clinical knowledge, these advancements support optimized health decisions. Among these technologies, next-generation sequencing (NGS) stands out as a transformative tool in the field of cancer treatment, playing a crucial role in precision oncology. NGS-based workflows are employed across a range of applications, including gene panels, exome sequencing, and whole-genome sequencing, supporting comprehensive analysis of the entire cancer genome, including mutations, copy number variations, gene expression profiles, and epigenetic modifications. By utilizing the power of NGS, these workflows contribute to enhancing our understanding of disease mechanisms, diagnosis confirmation, identifying therapeutic targets, and guiding personalized treatment decisions. This manuscript explores the diverse applications of NGS in cancer treatment, highlighting its significance in guiding diagnosis and treatment decisions, identifying therapeutic targets, monitoring disease progression, and improving patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singal G et al (2019) Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database. JAMA 321(14):1391–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levy SE, Myers RM (2016) Advancements in next-generation sequencing. Annu Rev Genomics Hum Genet 17:95–115

    Article  CAS  PubMed  Google Scholar 

  3. Satam H et al (2023) Next-generation sequencing technology: current trends and advancements. Biology (Basel) 12:7

    Google Scholar 

  4. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rothberg JM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348–352

    Article  CAS  PubMed  Google Scholar 

  6. Uhlen M, Quake SR (2023) Sequential sequencing by synthesis and the next-generation sequencing revolution. Trends Biotechnol 41(12):1565–1572

  7. van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, Hernandez C (2023) Genomics in the long-read sequencing era. Trends Genet 39(9):649–671

  8. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genom Proteomics Bioinforma 13(5):278–289

    Article  Google Scholar 

  9. Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  CAS  PubMed  Google Scholar 

  10. Mikheyev AS, Tin MM (2014) A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour 14(6):1097–1102

    Article  CAS  PubMed  Google Scholar 

  11. Quick J, Quinlan AR, Loman NJ (2014) A reference bacterial genome dataset generated on the MinION portable single-molecule nanopore sequencer. Gigascience 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chaisson MJ et al (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517(7536):608–611

    Article  CAS  PubMed  Google Scholar 

  13. Wenger AM et al (2019) Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37(10):1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vollger MR et al (2020) Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Ann Hum Genet 84(2):125–140

    Article  CAS  PubMed  Google Scholar 

  15. Volden R et al (2018) Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc Natl Acad Sci U S A 115(39):9726–9731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee I et al (2020) Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat Methods 17(12):1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simpson JT et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14(4):407–410

    Article  CAS  PubMed  Google Scholar 

  18. Vaser R et al (2017) Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27(5):737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonenfant Q, Noe L, Touzet H (2023) Porechop_ABI: discovering unknown adapters in Oxford Nanopore Technology sequencing reads for downstream trimming. Bioinform Adv 3(1):vbac085

    Article  PubMed  Google Scholar 

  20. Salmela L, Rivals E (2014) LoRDEC: accurate and efficient long read error correction. Bioinformatics 30(24):3506–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang X et al (2013) V-Phaser 2: variant inference for viral populations. BMC Genomics 14:674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boza V, Brejova B, Vinar T (2017) DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS ONE 12(6):e0178751

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rang FJ, Kloosterman WP, de Ridder J (2018) From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol 19(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Liotta L (2011) Clinical bioinformatics: a new emerging science. J Clin Bioinforma 1(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roy S et al (2018) Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists. J Mol Diagn 20(1):4–27

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  26. Roy S et al (2016) Next-generation sequencing informatics: challenges and strategies for implementation in a clinical environment. Arch Pathol Lab Med 140(9):958–975

    Article  CAS  PubMed  Google Scholar 

  27. Thankaswamy-Kosalai S, Sen P, Nookaew I (2017) Evaluation and assessment of read-mapping by multiple next-generation sequencing aligners based on genome-wide characteristics. Genomics 109(3–4):186–191

    Article  CAS  PubMed  Google Scholar 

  28. Cibulskis K et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koboldt DC et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22(3):568–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    Article  PubMed  PubMed Central  Google Scholar 

  31. den Dunnen JT et al (2016) HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 37(6):564–569

    Article  Google Scholar 

  32. Li MM et al (2017) Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 19(1):4–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robinson JT et al (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sayers EW, O’Sullivan C, Karsch-Mizrachi I (2022) Using GenBank and SRA methods. Mol Biol 2443:1–25

    CAS  Google Scholar 

  35. Kadri S et al (2022) Containers in bioinformatics: applications, practical considerations, and best practices in molecular pathology. J Mol Diagn 24(5):442–454

    Article  CAS  PubMed  Google Scholar 

  36. Conway JR, Warner JL, Rubinstein WS, Miller RS (2019) Next-generation sequencing and the clinical oncology workflow: data challenges, proposed solutions, and a call to action. JCO Precis Oncol 3:PO.19.00232

  37. Heeke AL, Pishvaian MJ, Lynce F, Xiu J, Brody JR, Chen WJ, Baker TM, Marshall JL, Isaacs C (2018) Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis Oncol 2018

  38. Pratt D, Sahm F, Aldape K (2021) DNA methylation profiling as a model for discovery and precision diagnostics in neuro-oncology. Neuro Oncol 23(23 5):S16–S29

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alexandrov LB et al (2020) The repertoire of mutational signatures in human cancer. Nature 578(7793):94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rekhtman N et al (2020) SMARCA4-deficient thoracic sarcomatoid tumors represent primarily smoking-related undifferentiated carcinomas rather than primary thoracic sarcomas. J Thorac Oncol 15(2):231–247

    Article  CAS  PubMed  Google Scholar 

  41. Fumet JD et al (2020) Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts. Eur J Cancer 131:40–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rizvi NA et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sha D et al (2020) Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov 10(12):1808–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sholl LM et al (2020) The promises and challenges of tumor mutation burden as an immunotherapy biomarker: a perspective from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol 15(9):1409–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jardim DL et al (2021) The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39(2):154–173

    Article  CAS  PubMed  Google Scholar 

  46. Samstein RM et al (2019) Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51(2):202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frampton GM et al (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31(11):1023–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chaudhary R et al (2018) A scalable solution for tumor mutational burden from formalin-fixed, paraffin-embedded samples using the oncomine tumor mutation load assay. Transl Lung Cancer Res 7(6):616–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vanderwalde A et al (2018) Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 7(3):746–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buchhalter I et al (2019) Size matters: dissecting key parameters for panel-based tumor mutational burden analysis. Int J Cancer 144(4):848–858

    Article  CAS  PubMed  Google Scholar 

  51. Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  Google Scholar 

  52. Garon EB et al (2019) Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 Study. J Clin Oncol 37(28):2518–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McGrail DJ et al (2021) High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol 32(5):661–672

    Article  CAS  PubMed  Google Scholar 

  54. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068

    Article  CAS  PubMed  Google Scholar 

  55. Song K, Xu H, Wang C (2022) The role of N6-methyladenosine methylation in the progression of endometrial cancer. Cancer Biother Radiopharm 37(9):737–749

    CAS  PubMed  Google Scholar 

  56. Moghbeli M et al (2014) Role of hMLH1 and E-cadherin promoter methylation in gastric cancer progression. J Gastrointest Cancer 45(1):40–47

    Article  CAS  PubMed  Google Scholar 

  57. Fujimoto M et al (2005) Methylation adjacent to negatively regulating AP-1 site reactivates TrkA gene expression during cancer progression. Oncogene 24(32):5108–5118

    Article  CAS  PubMed  Google Scholar 

  58. Papanicolau-Sengos A, Aldape K (2022) DNA methylation profiling: an emerging paradigm for cancer diagnosis. Annu Rev Pathol 17:295–321

    Article  CAS  PubMed  Google Scholar 

  59. Koelsche C, von Deimling A (2022) Methylation classifiers: brain tumors, sarcomas, and what’s next. Genes Chromosomes Cancer 61(6):346–355

    Article  CAS  PubMed  Google Scholar 

  60. Asaoka Y, Ijichi H, Koike K (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 373(20):1979

    Article  PubMed  Google Scholar 

  61. Petruzzellis G et al (2019) Role of DNA methylation profile in diagnosing astroblastoma: a case report and literature review. Front Genet 10:391

    Article  PubMed  PubMed Central  Google Scholar 

  62. Capper D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555(7697):469–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sturm D et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lehman NL et al (2019) Genomic analysis demonstrates that histologically-defined astroblastomas are molecularly heterogeneous and that tumors with MN1 rearrangement exhibit the most favorable prognosis. Acta Neuropathol Commun 7(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mackinnon AC Jr, Johnson CM, Robin A, Christiansen L, Hanbazazh M, Summey RM, Chandrashaker D, Harada S, Bradley WH (2023) Pathologic, immunologic, and clinical analysis of the microsatellite instability phenotype in endometrial carcinoma. Hum Pathol 139:80–90

  66. Zhu L et al (2018) A novel and reliable method to detect microsatellite instability in colorectal cancer by next-generation sequencing. J Mol Diagn 20(2):225–231

    Article  CAS  PubMed  Google Scholar 

  67. Stelloo E et al (2017) Practical guidance for mismatch repair-deficiency testing in endometrial cancer. Ann Oncol 28(1):96–102

    Article  CAS  PubMed  Google Scholar 

  68. Wang Y et al (2017) Differences in microsatellite instability profiles between endometrioid and colorectal cancers: a potential cause for false-negative results? J Mol Diagn 19(1):57–64

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  69. Mackinnon AC Jr et al (2023) Pathologic, immunologic, and clinical analysis of the microsatellite instability phenotype in endometrial carcinoma. Hum Pathol 139:80–90

    Article  CAS  PubMed  Google Scholar 

  70. Le DT et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Le DT et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kahn RM et al (2019) Universal endometrial cancer tumor typing: how much has immunohistochemistry, microsatellite instability, and MLH1 methylation improved the diagnosis of Lynch syndrome across the population? Cancer 125(18):3172–3183

    Article  CAS  PubMed  Google Scholar 

  73. Nguyen L et al (2020) Pan-cancer landscape of homologous recombination deficiency. Nat Commun 11(1):5584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maxwell KN et al (2017) BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat Commun 8(1):319

    Article  PubMed  PubMed Central  Google Scholar 

  75. Poti A et al (2019) Correlation of homologous recombination deficiency induced mutational signatures with sensitivity to PARP inhibitors and cytotoxic agents. Genome Biol 20(1):240

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pacheco-Barcia V et al (2022) The homologous recombination deficiency scar in advanced cancer: agnostic targeting of damaged DNA repair. Cancers (Basel) 14:12

    Article  Google Scholar 

  77. Telli ML et al (2016) Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res 22(15):3764–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lawrence MS et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding L et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382):506–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu Z et al (2022) Towards accurate and reliable resolution of structural variants for clinical diagnosis. Genome Biol 23(1):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Robbe P et al (2018) Clinical whole-genome sequencing from routine formalin-fixed, paraffin-embedded specimens: pilot study for the 100,000 genomes project. Genet Med 20(10):1196–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duncavage EJ et al (2021) Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N Engl J Med 384(10):924–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dorney R et al (2023) Recent advances in cancer fusion transcript detection. Brief Bioinform 24:1

    Article  CAS  Google Scholar 

  84. Heydt C et al (2021) Detection of gene fusions using targeted next-generation sequencing: a comparative evaluation. BMC Med Genomics 14(1):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim T et al (2020) RNA sequencing as an alternative tool for detecting measurable residual disease in core-binding factor acute myeloid leukemia. Sci Rep 10(1):20119

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mandelker D, Ceyhan-Birsoy O (2020) Evolving significance of tumor-normal sequencing in cancer care. Trends Cancer 6(1):31–39

    Article  CAS  PubMed  Google Scholar 

  87. Dumbrava EI, Brusco L, Daniels M, Wathoo C, Shaw K, Lu K, Zheng X, Strong L, Litton J, Arun B, Eterovic AK, Routbort M, Patel K, Qi Y, Piha-Paul S, Subbiah V, Hong D, Rodon J, Kopetz S, Mendelsohn J, Mills GB, Chen K, Meric-Bernstam F (2019) Expanded analysis of secondary germline findings from matched tumor/normal sequencing identifies additional clinically significant mutations. JCO Precis Oncol 3:PO.18.00143

  88. Mandelker D, Zhang L (2018) The emerging significance of secondary germline testing in cancer genomics. J Pathol 244(5):610–615

    Article  CAS  PubMed  Google Scholar 

  89. Sahajpal NS et al (2021) Optical genome mapping as a next-generation cytogenomic tool for detection of structural and copy number variations for prenatal genomic analyses. Genes (Basel) 12:3

    Article  Google Scholar 

  90. Sahajpal NS et al (2023) Clinical utility of optical genome mapping and 523-gene next generation sequencing panel for comprehensive evaluation of myeloid cancers. Cancers (Basel) 15:12

    Article  Google Scholar 

  91. Levy B et al (2023) Optical genome mapping in acute myeloid leukemia: a multicenter evaluation. Blood Adv 7(7):1297–1307

    Article  CAS  PubMed  Google Scholar 

  92. Neveling K et al (2021) Next-generation cytogenetics: comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping. Am J Hum Genet 108(8):1423–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Incorvaia L, Russo A, Cinieri S (2022) The molecular tumor board: a tool for the governance of precision oncology in the real world. Tumori 108(4):288–290

    Article  PubMed  Google Scholar 

  94. Tamborero D et al (2022) The Molecular Tumor Board Portal supports clinical decisions and automated reporting for precision oncology. Nat Cancer 3(2):251–261

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cannon TL et al (2022) Patient attendance at molecular tumor board: a new means of shared decision making? Curr Probl Cancer 46(3):100860

    Article  PubMed  Google Scholar 

  96. Nierengarten MB (2023) MatchMiner open-source platform matches patients with cancer to precision medicine trials. Cancer 129(4):494

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The contribution of both authors was equal, reflecting a collaborative and balanced effort in the development of this work.

Corresponding authors

Correspondence to A. Craig Mackinnon Jr or David I. Suster.

Ethics declarations

Ethical approval

We affirm that both authors have adhered to ethical standards throughout the creation of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackinnon, A.C., Chandrashekar, D.S. & Suster, D.I. Molecular pathology as basis for timely cancer diagnosis and therapy. Virchows Arch 484, 155–168 (2024). https://doi.org/10.1007/s00428-023-03707-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-023-03707-2

Keywords

Navigation