Skip to main content

Advertisement

Log in

The cytokeratin 17 expression in primary ovarian tumors has diagnostic but not prognostic significance

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

We assessed the value of cytokeratin 17 (CK17) expression for the differential diagnosis between primary ovarian mucinous tumors and metastases from the gastrointestinal tract (GIT) and the significance of CK17 expression in a broad spectrum of primary ovarian tumors with respect to their prognosis. The sample set consisted of 554 primary ovarian tumors and 255 GIT tumors. In the primary ovarian tumors, a higher CK17 expression (in > 10% of tumors cells) was present only in 0–11.4% of all tumors (including mucinous tumors, micropapillary serous borderline tumors, clear cell, endometrioid, and high-grade serous carcinomas). The only exception was low-grade serous carcinoma, where higher CK17 expression was present in 24% of cases. Concerning GIT tumors, the higher levels of CK 17 expression (in > 10% of tumor cells) were observed in the upper GIT tumors (68.5% of pancreatic ductal adenocarcinoma, 61.6% of gallbladder adenocarcinoma, and 46% of gastric adenocarcinoma), which differs substantially not only from most of the primary ovarian tumors, but also from colorectal carcinoma (3.7%; p < 0.001). The results of our study suggest that expression of CK17 can potentially be used as an adjunct marker in differential diagnosis between primary ovarian mucinous tumors and metastases from the upper GIT, but not from colorectal carcinoma. However, in GIT tumors, CK17 can be used in the differential diagnosis between adenocarcinomas of the upper and lower GIT. Statistical analysis did not reveal strong association of CK17 expression with clinicopathological variables or patient outcomes in any primary ovarian tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study is included in this published article (and its Supplementary information files).

References

  1. Moll R, Divo M, Langbein L (2008) The human keratins: biology and pathology. Histochem Cell Biol 129(6):705–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Troyanovsky SM et al (1989) Patterns of expression of keratin 17 in human epithelia: dependency on cell position. J Cell Sci 93(Pt 3):419–426

    Article  PubMed  Google Scholar 

  3. Guelstein VI et al (1988) Monoclonal antibody mapping of keratins 8 and 17 and of vimentin in normal human mammary gland, benign tumors, dysplasias and breast cancer. Int J Cancer 42(2):147–153

    Article  CAS  PubMed  Google Scholar 

  4. Miettinen M et al (1997) Keratin 17: immunohistochemical mapping of its distribution in human epithelial tumors and its potential applications. Applied Immunohistochemistry 5(3):152–159

    Article  CAS  Google Scholar 

  5. Guelstein VI et al (1993) Immunohistochemical localization of cytokeratin 17 in transitional cell carcinomas of the human urinary tract. Virchows Arch B Cell Pathol Incl Mol Pathol 64(1):1–5

    Article  CAS  PubMed  Google Scholar 

  6. Escobar-Hoyos LF et al (2014) Keratin 17 in premalignant and malignant squamous lesions of the cervix: proteomic discovery and immunohistochemical validation as a diagnostic and prognostic biomarker. Mod Pathol 27(4):621–630

    Article  CAS  PubMed  Google Scholar 

  7. Maddox P et al (1999) Differential expression of keratins 10, 17, and 19 in normal cervical epithelium, cervical intraepithelial neoplasia, and cervical carcinoma. J Clin Pathol 52(1):41–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Regauer S, Reich O (2007) CK17 and p16 expression patterns distinguish (atypical) immature squamous metaplasia from high-grade cervical intraepithelial neoplasia (CIN III). Histopathology 50(5):629–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Podoll MB et al (2017) Assessment of CK17 as a marker for the diagnosis of differentiated vulvar intraepithelial neoplasia. Int J Gynecol Pathol 36(3):273–280

    Article  CAS  PubMed  Google Scholar 

  10. Escobar-Hoyos LF et al (2015) Keratin-17 promotes p27KIP1 nuclear export and degradation and offers potential prognostic utility. Cancer Res 75(17):3650–3662

    Article  CAS  PubMed  Google Scholar 

  11. Goldstein NS, Bassi D, Uzieblo A (2001) WT1 is an integral component of an antibody panel to distinguish pancreaticobiliary and some ovarian epithelial neoplasms. Am J Clin Pathol 116(2):246–252

    Article  CAS  PubMed  Google Scholar 

  12. Ackroyd SA et al (2019) Pancreaticobiliary metastasis presenting as primary mucinous ovarian neoplasm: a systematic literature review. Gynecol Oncol Rep 28:109–115

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nemejcova K et al (2021) A comprehensive analysis of the expression, epigenetic and genetic changes of HNF1B and ECI2 in 122 cases of high-grade serous ovarian carcinoma. Oncol Lett 21(3):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bartu M et al (2020) Expression, epigenetic, and genetic changes of HNF1B in colorectal lesions: an analysis of 145 cases. Pathol Oncol Res 26(4):2337–2350

    Article  PubMed  CAS  Google Scholar 

  15. Dundr P et al (2021) Uterine cellular leiomyomas are characterized by common HMGA2 aberrations, followed by chromosome 1p deletion and MED12 mutation: morphological, molecular, and immunohistochemical study of 52 cases. Virchows Arch 480(2):281–289

    Article  PubMed  CAS  Google Scholar 

  16. Yang HS et al (2012) Clinical significance of MUC1, MUC2 and CK17 expression patterns for diagnosis of pancreatobiliary arcinoma. Biotech Histochem 87(2):126–132

    Article  CAS  PubMed  Google Scholar 

  17. Roa-Pena L et al (2019) Keratin 17 identifies the most lethal molecular subtype of pancreatic cancer. Sci Rep 9(1):11239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ide M et al (2012) Keratin 17 expression correlates with tumor progression and poor prognosis in gastric adenocarcinoma. Ann Surg Oncol 19(11):3506–3514

    Article  PubMed  Google Scholar 

  19. Lok T et al (2014) Immunohistochemical distinction between intrahepatic cholangiocarcinoma and pancreatic ductal adenocarcinoma. Hum Pathol 45(2):394–400

    Article  CAS  PubMed  Google Scholar 

  20. Kim K et al (2017) Cytokeratin 17 expression is associated with poor prognosis in gallbladder adenocarcinoma. Appl Immunohistochem Mol Morphol 25(5):346–350

    Article  CAS  PubMed  Google Scholar 

  21. Ujiie D et al (2020) KRT17 as a prognostic biomarker for stage II colorectal cancer. Carcinogenesis 41(5):591–599

    Article  PubMed  CAS  Google Scholar 

  22. Wang YF et al (2013) Overexpression of keratin 17 is associated with poor prognosis in epithelial ovarian cancer. Tumour Biol 34(3):1685–1689

    Article  CAS  PubMed  Google Scholar 

  23. Carrasco C et al (2021) The evaluation of 17 gastrointestinal tumor markers reveals prognosis value for MUC6, CK17, and CD10 in gallbladder-cancer patients. Diagnostics (Basel) 11(2):153

    Article  CAS  Google Scholar 

  24. Chu PG et al (2005) Immunohistochemical staining in the diagnosis of pancreatobiliary and ampulla of Vater adenocarcinoma: application of CDX2, CK17, MUC1, and MUC2. Am J Surg Pathol 29(3):359–367

    Article  PubMed  Google Scholar 

  25. Hamada T et al (2008) Immunohistochemical analysis of reserve cell-like cells of ovarian mullerian mucinous/mixed epithelial borderline tumor. Int J Gynecol Pathol 27(2):199–206

    PubMed  Google Scholar 

  26. Sarbia M et al (2007) Differentiation between pancreaticobiliary and upper gastrointestinal adenocarcinomas: is analysis of cytokeratin 17 expression helpful? Am J Clin Pathol 128(2):255–259

    Article  PubMed  Google Scholar 

  27. Kim CY et al (2012) Proteomic analysis reveals overexpression of moesin and cytokeratin 17 proteins in colorectal carcinoma. Oncol Rep 27(3):608–620

    CAS  PubMed  Google Scholar 

  28. Mockler D et al (2017) Keratin 17 is a prognostic biomarker in endocervical glandular neoplasia. Am J Clin Pathol 148(3):264–273

    Article  CAS  PubMed  Google Scholar 

  29. Merkin RD et al (2017) Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer. Hum Pathol 62:23–32

    Article  CAS  PubMed  Google Scholar 

  30. Regenbogen E et al (2018) Elevated expression of keratin 17 in oropharyngeal squamous cell carcinoma is associated with decreased survival. Head Neck 40(8):1788–1798

    PubMed  Google Scholar 

  31. Zeng Y et al (2020) Keratin 17 suppresses cell proliferation and epithelial-mesenchymal transition in pancreatic cancer. Front Med (Lausanne) 7:572494

    Article  Google Scholar 

  32. Bai JDK et al (2019) Keratin 17 is a negative prognostic biomarker in high-grade endometrial carcinomas. Hum Pathol 94:40–50

    Article  CAS  PubMed  Google Scholar 

  33. Li C et al (2021) A pan-cancer analysis of the oncogenic role of keratin 17 (KRT17) in human tumors. Transl Cancer Res 10(10):4489–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan CH et al (2020) An unbiased high-throughput drug screen reveals a potential therapeutic vulnerability in the most lethal molecular subtype of pancreatic cancer. Mol Oncol 14(8):1800–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seidman JD, Kurman RJ, Ronnett BM (2003) Primary and metastatic mucinous adenocarcinomas in the ovaries: incidence in routine practice with a new approach to improve intraoperative diagnosis. Am J Surg Pathol 27(7):985–993

    Article  PubMed  Google Scholar 

  36. Platz CE, Benda JA (1995) Female genital tract cancer. Cancer 75(1 Suppl):270–294

    Article  CAS  PubMed  Google Scholar 

  37. Mink PJ, Sherman ME, Devesa SS (2002) Incidence patterns of invasive and borderline ovarian tumors among white women and black women in the United States. Results from the SEER Program, 1978-1998. Cancer 95(11):2380–9

    Article  PubMed  Google Scholar 

  38. Dundr P et al (2021) Primary mucinous ovarian tumors vs ovarian metastases from gastrointestinal tract, pancreas and biliary tree: a review of current problematics. Diagn Pathol 16(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  39. McCluggage WG, Wilkinson N (2005) Metastatic neoplasms involving the ovary: a review with an emphasis on morphological and immunohistochemical features. Histopathology 47(3):231–247

    Article  CAS  PubMed  Google Scholar 

  40. McCluggage WG, Young RH (2005) Immunohistochemistry as a diagnostic aid in the evaluation of ovarian tumors. Semin Diagn Pathol 22(1):3–32

    Article  PubMed  Google Scholar 

  41. McCluggage WG (2012) Immunohistochemistry in the distinction between primary and metastatic ovarian mucinous neoplasms. J Clin Pathol 65(7):596–600

    Article  PubMed  Google Scholar 

  42. Hu J et al (2018) The pathologic distinction of primary and metastatic mucinous tumors involving the ovary: a re-evaluation of algorithms based on gross features. Ann Diagn Pathol 37:1–6

    Article  PubMed  Google Scholar 

  43. Talia KL, Parra-Herran C, McCluggage WG (2022) Ovarian mucinous and seromucinous neoplasms: problematic aspects and modern diagnostic approach. Histopathology 80(2):255–278

    Article  PubMed  Google Scholar 

  44. Meagher NS et al (2019) A combination of the immunohistochemical markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases. Mod Pathol 32(12):1834–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park CK, Kim HS (2018) Clinicopathological characteristics of ovarian metastasis from colorectal and pancreatobiliary carcinomas mimicking primary ovarian mucinous tumor. Anticancer Res 38(9):5465–5473

    Article  PubMed  Google Scholar 

  46. Meriden Z et al (2011) Ovarian metastases of pancreaticobiliary tract adenocarcinomas: analysis of 35 cases, with emphasis on the ability of metastases to simulate primary ovarian mucinous tumors. Am J Surg Pathol 35(2):276–288

    Article  PubMed  Google Scholar 

  47. Yoshida H et al (2021) Gross mucinous multinodular appearance aids in the identification of ovarian metastases in low-grade appendiceal mucinous neoplasms during intraoperative consultation. Ann Diagn Pathol 50:151641

    Article  PubMed  Google Scholar 

  48. Young RH, Hart WR (1989) Metastases from carcinomas of the pancreas simulating primary mucinous tumors of the ovary. A report of seven cases. Am J Surg Pathol 13(9):748–56

    Article  CAS  PubMed  Google Scholar 

  49. Alghamdi S, Alghaashamy K, Pinto A (2020) Expression of SMAD4 is retained in most gynecologic tumors with mucinous differentiation. Int J Gynecol Pathol 39(5):493–497

    Article  CAS  PubMed  Google Scholar 

  50. Zapata M, Cohen C, Siddiqui MT (2007) Immunohistochemical expression of SMAD4, CK19, and CA19-9 in fine needle aspiration samples of pancreatic adenocarcinoma: utility and potential role. Cytojournal 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ritterhouse LL et al (2019) Loss of SMAD4 protein expression in gastrointestinal and extra-gastrointestinal carcinomas. Histopathology 75(4):546–551

    Article  PubMed  Google Scholar 

  52. Hu Z et al (2020) The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells. Cancer Cell 37(2):226-242 e7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mgr. Zachary Harold Kane Kendall, B.A. (Institute for History of Medicine and Foreign Languages, First Faculty of Medicine, Charles University) for the English proofreading.

Funding

This work was supported by the Ministry of Health, Czech Republic (MH CZ DRO-VFN 64165 and AZV NV19-03–00007); by Charles University (Project UNCE204065); and by the European Regional Development Fund (EF16_013/0001674 and BBMRI_CZ LM2018125).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors participated on material preparation, data collection, or analyses. The first draft of the manuscript was written by Pavel Dundr, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pavel Dundr.

Ethics declarations

Ethics approval

The study has been approved by the Ethics Committee of General University Hospital in Prague in compliance with the Helsinki Declaration (No. 2140/19 S-IV). The Ethics Committee waived the requirement for informed consent; as according to the Czech Law (Act. no. 373/11, and its amendment Act no. 202/17), it is not necessary to obtain informed consent in fully anonymized studies.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Supplementary file2 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dundr, P., Bazalová, B., Bártů, M. et al. The cytokeratin 17 expression in primary ovarian tumors has diagnostic but not prognostic significance. Virchows Arch 481, 201–212 (2022). https://doi.org/10.1007/s00428-022-03338-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03338-z

Keywords

Navigation