Skip to main content

Advertisement

Log in

Performance of novel non-invasive urine assay UroSEEK in cohorts of equivocal urine cytology

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

A Correction to this article was published on 18 February 2022

This article has been updated

Abstract

Urine cytology is an essential element of the diagnostic work up of hematuria. A significant proportion of cases continue to be placed in the “atypical” or “suspicious” categories of the Paris system for urine cytology, posing difficulty in patient management. We report on the performance of our recently described urine-based assay “UroSEEK” in cases with equivocal diagnosis in patients who are investigated for bladder cancer. Urine samples were collected from two cohorts. The first consisted of patients who presented with hematuria or lower urinary tract symptoms (early detection cohort) and the second of patients that are in follow-up for prior bladder cancer (surveillance cohort). Urine samples were analyzed for mutations in 11 genes and aneuploidy. In the early detection setting, we found high sensitivity and specificity (96% and 88%, respectively) and a strong negative predictive value of 99%. The assay performance was less robust in the surveillance cohort (sensitivity of 74%, specificity of 72%, and negative predictive value of 53%). UroSEEK demonstrated a notable lead time to cancer diagnosis. Seven cases in the early detection cohort and 71 surveillance cases were detected at least 6 months prior to clinical diagnosis. Our results suggest a potential role for UroSEEK assay in guiding management of patients with atypical urine cytology if confirmed in future prospective trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Lotan Y, Roehrborn CG (2003) Sensitivity and specificity of commonly available bladder tumor markers versus cytology: results of a comprehensive literature review and meta-analyses. Urology 61:109–118 discussion 118

    Article  PubMed  Google Scholar 

  3. Sullivan PS, Chan JB, Levin MR, Rao J (2010) Urine cytology and adjunct markers for detection and surveillance of bladder cancer. Am J Transl Res 2:412–440

    PubMed  PubMed Central  Google Scholar 

  4. Xie Q, Huang Z, Zhu Z, Zheng X, Liu J, Zhang M, Zhang Y (2016) Diagnostic value of urine cytology in bladder cancer. A meta-analysis. Anal Quant Cytopathol Histopathol 38:38–44

    Google Scholar 

  5. Barkan GA, Wojcik EM, Nayar R, Savic-Prince S, Quek ML, Kurtycz DF, Rosenthal DL (2016) The Paris system for reporting urinary cytology: the quest to develop a standardized terminology. Adv Anat Pathol 23:193–201. https://doi.org/10.1097/PAP.0000000000000118

    Article  PubMed  Google Scholar 

  6. Piaton E, Decaussin-Petrucci M, Mege-Lechevallier F, Advenier AS, Devonec M, Ruffion A (2014) Diagnostic terminology for urinary cytology reports including the new subcategories ‘atypical urothelial cells of undetermined significance’ (AUC-US) and ‘cannot exclude high grade’ (AUC-H). Cytopathology 25:27–38. https://doi.org/10.1111/cyt.12050

    Article  CAS  PubMed  Google Scholar 

  7. Rosenthal DL, Vandenbussche CJ, Burroughs FH, Sathiyamoorthy S, Guan H, Owens C (2013) The Johns Hopkins Hospital template for urologic cytology samples: part I-creating the template. Cancer Cytopathol 121:15–20. https://doi.org/10.1002/cncy.21255

    Article  PubMed  Google Scholar 

  8. Netto GJ (2011) Molecular biomarkers in urothelial carcinoma of the bladder: are we there yet? Nat Rev Urol 9:41–51. https://doi.org/10.1038/nrurol.2011.193

    Article  CAS  PubMed  Google Scholar 

  9. Lopez-Knowles E, Hernandez S, Malats N, Kogevinas M, Lloreta J, Carrato A, Tardon A, Serra C, Real FX (2006) PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res 66:7401–7404. https://doi.org/10.1158/0008-5472.can-06-1182

    Article  CAS  PubMed  Google Scholar 

  10. Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC (2010) FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One 5:e13821. https://doi.org/10.1371/journal.pone.0013821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oxford G, Theodorescu D (2003) The role of Ras superfamily proteins in bladder cancer progression. J Urol 170:1987–1993. https://doi.org/10.1097/01.ju.0000088670.02905.78

    Article  CAS  PubMed  Google Scholar 

  12. Mitra AP, Datar RH, Cote RJ (2006) Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol Off J Am Soc Clin Oncol 24:5552–5564. https://doi.org/10.1200/jco.2006.08.2073

    Article  CAS  Google Scholar 

  13. Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725. https://doi.org/10.1038/nrc1697

    Article  CAS  PubMed  Google Scholar 

  14. Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr, Friedman AH, Friedman H, Gallia GL, Giovanella BC, Grollman AP, He TC, He Y, Hruban RH, Jallo GI, Mandahl N, Meeker AK, Mertens F, Netto GJ, Rasheed BA, Riggins GJ, Rosenquist TA, Schiffman M, Shih Ie M, Theodorescu D, Torbenson MS, Velculescu VE, Wang TL, Wentzensen N, Wood LD, Zhang M, McLendon RE, Bigner DD, Kinzler KW, Vogelstein B, Papadopoulos N, Yan H (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 110:6021–6026. https://doi.org/10.1073/pnas.1303607110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scott GA, Laughlin TS, Rothberg PG (2014) Mutations of the TERT promoter are common in basal cell carcinoma and squamous cell carcinoma. Mod Pathol 27:516–523. https://doi.org/10.1038/modpathol.2013.167

    Article  CAS  PubMed  Google Scholar 

  16. Heidenreich B, Rachakonda PS, Hemminki K, Kumar R (2014) TERT promoter mutations in cancer development. Curr Opin Genet Dev 24:30–37. https://doi.org/10.1016/j.gde.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  17. Kinde I, Munari E, Faraj SF, Hruban RH, Schoenberg M, Bivalacqua T, Allaf M, Springer S, Wang Y, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N, Netto GJ (2013) TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res 73:7162–7167. https://doi.org/10.1158/0008-5472.can-13-2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodriguez Pena MDC, Tregnago AC, Eich ML, Springer S, Wang Y, Taheri D, Ertoy D, Fujita K, Bezerra SM, Cunha IW, Raspollini MR, Yu L, Bivalacqua TJ, Papadopoulos N, Kinzler KW, Vogelstein B, Netto GJ (2017) Spectrum of genetic mutations in de novo PUNLMP of the urinary bladder. Virchows Arch 471:761–767. https://doi.org/10.1007/s00428-017-2164-5

    Article  CAS  PubMed  Google Scholar 

  19. Palsgrove DN, Taheri D, Springer SU, Cowan M, Guner G, Mendoza Rodriguez MA, Del Carmen Rodriguez Pena M, Wang Y, Kinde I, Ricardo BFP, Cunha I, Fujita K, Ertoy D, Kinzler KW, Bivalacqua TJ, Papadopoulos N, Vogelstein B, Netto GJ (2018) Targeted sequencing of plasmacytoid urothelial carcinoma reveals frequent TERT promoter mutations. Hum Pathol. https://doi.org/10.1016/j.humpath.2018.10.033

  20. Cowan ML, Springer S, Nguyen D, Taheri D, Guner G, Mendoza Rodriguez MA, Wang Y, Kinde I, Del Carmen Rodriguez Pena M, CJ VB, Olson MT, Cunha I, Fujita K, Ertoy D, Kinzler K, Bivalacqua T, Papadopoulos N, Vogelstein B, Netto GJ (2016) Detection of TERT promoter mutations in primary adenocarcinoma of the urinary bladder. Hum Pathol 53:8–13. https://doi.org/10.1016/j.humpath.2016.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen D, Taheri D, Springer S, Cowan M, Guner G, Mendoza Rodriguez MA, Wang Y, Kinde I, VandenBussche CJ, Olson MT, Ricardo BF, Cunha I, Fujita K, Ertoy D, Kinzler KW, Bivalacqua TJ, Papadopoulos N, Vogelstein B, Netto GJ (2016) High prevalence of TERT promoter mutations in micropapillary urothelial carcinoma. Virchows Arch 469:427–434. https://doi.org/10.1007/s00428-016-2001-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fradet Y, Lockhard C (1997) Performance characteristics of a new monoclonal antibody test for bladder cancer: ImmunoCyt trade mark. Can J Urol 4:400–405

    PubMed  Google Scholar 

  23. Kruger S, Mess F, Bohle A, Feller AC (2003) Numerical aberrations of chromosome 17 and the 9p21 locus are independent predictors of tumor recurrence in non-invasive transitional cell carcinoma of the urinary bladder. Int J Oncol 23:41–48

    PubMed  Google Scholar 

  24. Skacel M, Fahmy M, Brainard JA, Pettay JD, Biscotti CV, Liou LS, Procop GW, Jones JS, Ulchaker J, Zippe CD, Tubbs RR (2003) Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol 169:2101–2105. https://doi.org/10.1097/01.ju.0000066842.45464.cc

    Article  CAS  PubMed  Google Scholar 

  25. Sarosdy MF, Kahn PR, Ziffer MD, Love WR, Barkin J, Abara EO, Jansz K, Bridge JA, Johansson SL, Persons DL, Gibson JS (2006) Use of a multitarget fluorescence in situ hybridization assay to diagnose bladder cancer in patients with hematuria. J Urol 176:44–47. https://doi.org/10.1016/s0022-5347(06)00576-3

    Article  PubMed  Google Scholar 

  26. Serizawa RR, Ralfkiaer U, Steven K, Lam GW, Schmiedel S, Schuz J, Hansen AB, Horn T, Guldberg P (2011) Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events. Int J Cancer 129:78–87. https://doi.org/10.1002/ijc.25651

    Article  CAS  PubMed  Google Scholar 

  27. Kawauchi S, Sakai H, Ikemoto K, Eguchi S, Nakao M, Takihara H, Shimabukuro T, Furuya T, Oga A, Matsuyama H, Takahashi M, Sasaki K (2009) 9p21 index as estimated by dual-color fluorescence in situ hybridization is useful to predict urothelial carcinoma recurrence in bladder washing cytology. Hum Pathol 40:1783–1789. https://doi.org/10.1016/j.humpath.2009.06.011

    Article  CAS  PubMed  Google Scholar 

  28. Allory Y, Beukers W, Sagrera A, Flandez M, Marques M, Marquez M, van der Keur KA, Dyrskjot L, Lurkin I, Vermeij M, Carrato A, Lloreta J, Lorente JA, Carrillo-de Santa Pau E, Masius RG, Kogevinas M, Steyerberg EW, van Tilborg AA, Abas C, Orntoft TF, Zuiverloon TC, Malats N, Zwarthoff EC, Real FX (2014) Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur Urol 65:360–366. https://doi.org/10.1016/j.eururo.2013.08.052

    Article  CAS  PubMed  Google Scholar 

  29. Bansal N, Gupta A, Sankhwar SN, Mahdi AA (2014) Low- and high-grade bladder cancer appraisal via serum-based proteomics approach. Clin Chim Acta 436:97–103. https://doi.org/10.1016/j.cca.2014.05.012

    Article  CAS  PubMed  Google Scholar 

  30. Hurst CD, Platt FM, Knowles MA (2014) Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine. Eur Urol 65:367–369. https://doi.org/10.1016/j.eururo.2013.08.057

    Article  CAS  PubMed  Google Scholar 

  31. Ralla B, Stephan C, Meller S, Dietrich D, Kristiansen G, Jung K (2014) Nucleic acid-based biomarkers in body fluids of patients with urologic malignancies. Crit Rev Clin Lab Sci 51:200–231. https://doi.org/10.3109/10408363.2014.914888

    Article  CAS  PubMed  Google Scholar 

  32. Ellinger J, Muller SC, Dietrich D (2015) Epigenetic biomarkers in the blood of patients with urological malignancies. Expert Rev Mol Diagn 15:505–516. https://doi.org/10.1586/14737159.2015.1019477

    Article  CAS  PubMed  Google Scholar 

  33. Yafi FA, Brimo F, Steinberg J, Aprikian AG, Tanguay S, Kassouf W (2015) Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol Oncol 33:66.e25–66.e31. https://doi.org/10.1016/j.urolonc.2014.06.008

    Article  Google Scholar 

  34. Wang Z, Que H, Suo C, Han Z, Tao J, Huang Z, Ju X, Tan R, Gu M (2017) Evaluation of the NMP22 BladderChek test for detecting bladder cancer: a systematic review and meta-analysis. Oncotarget 8:100648–100656. https://doi.org/10.18632/oncotarget.22065

    Article  PubMed  PubMed Central  Google Scholar 

  35. Halling KC, Kipp BR (2008) Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol 15:279–286. https://doi.org/10.1097/PAP.0b013e3181832320

    Article  CAS  PubMed  Google Scholar 

  36. Springer SU, Chen CH, Rodriguez Pena MDC, Li L, Douville C, Wang Y, Cohen JD, Taheri D, Silliman N, Schaefer J, Ptak J, Dobbyn L, Papoli M, Kinde I, Afsari B, Tregnago AC, Bezerra SM, VandenBussche C, Fujita K, Ertoy D, Cunha IW, Yu L, Bivalacqua TJ, Grollman AP, Diaz LA, Karchin R, Danilova L, Huang CY, Shun CT, Turesky RJ, Yun BH, Rosenquist TA, Pu YS, Hruban RH, Tomasetti C, Papadopoulos N, Kinzler KW, Vogelstein B, Dickman KG, Netto GJ (2018) Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. Elife 7. https://doi.org/10.7554/eLife.32143

  37. Sarkis AS, Dalbagni G, Cordon-Cardo C, Zhang ZF, Sheinfeld J, Fair WR, Herr HW, Reuter VE (1993) Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker for disease progression. J Natl Cancer Inst 85:53–59

    Article  CAS  PubMed  Google Scholar 

  38. Shackney SE, Berg G, Simon SR, Cohen J, Amina S, Pommersheim W, Yakulis R, Wang S, Uhl M, Smith CA et al (1995) Origins and clinical implications of aneuploidy in early bladder cancer. Cytometry 22:307–316. https://doi.org/10.1002/cyto.990220407

    Article  CAS  PubMed  Google Scholar 

  39. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 108:9530–9535. https://doi.org/10.1073/pnas.1105422108

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kinde I, Papadopoulos N, Kinzler KW, Vogelstein B (2012) FAST-SeqS: a simple and efficient method for the detection of aneuploidy by massively parallel sequencing. PLoS One 7:e41162. https://doi.org/10.1371/journal.pone.0041162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Virk RK, Abro S, de Ubago JMM, Pambuccian SE, Quek ML, Wojcik EM, Mehrotra S, Chatt GU, Barkan GA (2017) The value of the UroVysion(R) FISH assay in the risk-stratification of patients with “atypical urothelial cells” in urinary cytology specimens. Diagn Cytopathol 45:481–500. https://doi.org/10.1002/dc.23686

    Article  PubMed  Google Scholar 

Download references

Funding

Support provided by Henry and Marsha Laufer, Virginia and D.K. Ludwig Fund for Cancer Research, the Commonwealth Foundation, John Templeton Foundation, Conrad R. Hilton Foundation and grants from the NIH (T32 GM007309/GM/NIGMS NIH HHS/United States; P30 CA006973/CA/NCI NIH HHS/United States; R01 ES019564/ES/NIEHS NIH HHS/United States). All sequencing was performed at the Sol Goldman Sequencing Facility at Johns Hopkins.

Author information

Authors and Affiliations

Authors

Contributions

GJN conceived and designed the study and wrote, edited and reviewed the manuscript. MCRP collected the data, wrote, edited, and reviewed the manuscript. SUS, DT, LL, ACT, MLE collected and analyzed the data and reviewed the manuscript. IEAE, CJV, NP, KWK, BV conceived and designed the study and edited and reviewed the manuscript.

All authors gave final approval for publication. GJN takes full responsibility for the work as a whole, including the study design, access to data, and the decision to submit and publish the manuscript.

Corresponding author

Correspondence to George J. Netto.

Ethics declarations

Conflict of interest

Nickolas Papadopoulos, Ken W Kinzler, and Bert Vogelstein: Founders of Personal Genome Diagnostics and PapGene and advice Sysmex-Inostics. Kinzler and Vogelstein also advise Eisai. Vogelstein is also an advisor to Camden Partners. These companies and others have licensed technologies from Johns Hopkins that are related to the work described in this paper. These licenses are associated with equity or royalty payments to Papadopoulos, Kinzler, Netto, and Vogelstein. Additional patent applications on the work described in this paper may be filed by Johns Hopkins University. The terms of these arrangements are managed by the university in accordance with its conflict of interest policies. The other authors declare that no competing interests exist.

Informed consent

The Institutional Review Board approved this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the funding section, the grant P30 CA077598 has been removed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez Pena, M., Springer, S.U., Taheri, D. et al. Performance of novel non-invasive urine assay UroSEEK in cohorts of equivocal urine cytology. Virchows Arch 476, 423–429 (2020). https://doi.org/10.1007/s00428-019-02654-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-019-02654-1

Keywords

Navigation