Skip to main content
Log in

Manipulation of low-level features modulates grouping strength of auditory objects

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

A central challenge of auditory processing involves the segregation, analysis, and integration of acoustic information into auditory perceptual objects for processing by higher order cognitive operations. This study explores the influence of low-level features on auditory object perception. Participants provided perceived musicality ratings in response to randomly generated pure tone sequences. Previous work has shown that music perception relies on the integration of discrete sounds into a holistic structure. Hence, high (versus low) ratings were viewed as indicative of strong (versus weak) object formation. Additionally, participants rated sequences in which random subsets of tones were manipulated along one of three low-level dimensions (timbre, amplitude, or fade-in) at one of three strengths (low, medium, or high). Our primary findings demonstrate how low-level acoustic features modulate the perception of auditory objects, as measured by changes in musicality ratings for manipulated sequences. Secondarily, we used principal component analysis to categorize participants into subgroups based on differential sensitivities to low-level auditory dimensions, thereby highlighting the importance of individual differences in auditory perception. Finally, we report asymmetries regarding the effects of low-level dimensions; specifically, the perceptual significance of timbre. Together, these data contribute to our understanding of how low-level auditory features modulate auditory object perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Janabi, S., & Greenberg, A. S. (2016). Target–object integration, attention distribution, and object orientation interactively modulate object-based selection. Attention, Perception, & Psychophysics, 78(7), 1968–1984. https://doi.org/10.3758/s13414-016-1126-3.

    Article  Google Scholar 

  • Barnas, A. J., & Greenberg, A. S. (2016). Visual field meridians modulate the reallocation of object-based attention. Attention, Perception, & Psychophysics, 78(7), 1985–1997. https://doi.org/10.3758/s13414-016-1116-5.

    Article  Google Scholar 

  • Bey, C., & McAdams, S. (2003). Postrecognition of interleaved melodies as an indirect measure of auditory stream formation. J Exp Psychol Human, 29, 267–279.

    Article  Google Scholar 

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: the perceptual organization of sound. Cambridge: Bradford Books, MIT Press.

    Book  Google Scholar 

  • Bregman, A. S. (2015). Progress in understanding auditory scene analysis. Music Perception: An Interdisciplinary Journal, 33(1), 12–19. https://doi.org/10.1525/mp.2015.33.1.12.

    Article  Google Scholar 

  • Bregman, A. S., Ahad, P. A., Crum, P. A., & OReilly, J. (2000). Effects of time intervals and tone durations on auditory stream segregation. Perception & Psychophysics, 62, 626–636.

    Article  Google Scholar 

  • Carlyon, R. P., Cusack, R., Foxton, J. M., & Robertson, I. H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 115–127.

    PubMed  Google Scholar 

  • Carrión, R., & Bly, B. (2008). The effects of learning on event-related potential correlates of musical expectancy. Psychophysiology, 45(5), 759–775.

    Article  PubMed  Google Scholar 

  • Cross, I. (2013). Music and biocultural evolution. In M. Clayton, T. Herbert, & R. Middleton (Eds.), The cultural study of music (pp. 39–49). Abingdon: Routledge.

    Google Scholar 

  • Cross, I., Howell, P., & West, R. (1983). Preferences for scale structure in melodic sequences. Journal of Experimental Psychology: Human Perception and Performance, 9(3), 444–460.

    PubMed  Google Scholar 

  • Cusack, R., Deeks, J., Aikman, G., & Carlyon, R. P. (2004). Effects of location, frequency region, and time course of selective attention on auditory scene analysis. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 643–656.

    PubMed  Google Scholar 

  • Cusack, R., & Roberts, B. (2000). Effects of differences in timbre on sequential grouping. Perceptron Psychophysics, 62, 1112–1120.

    Article  Google Scholar 

  • Dannenbring, G. L., & Bregman, A. S. (1976). Effect of silence between tones on auditory stream segregation. The Journal of the Acoustical Society of America, 59, 987–989.

    Article  PubMed  Google Scholar 

  • Darwin, C. J. (1997). Auditory grouping. Trends Cognition of Sciences, 1, 327–333.

    Article  Google Scholar 

  • Darwin, C., & Hukin, R. (2000). Effectiveness of spatial cues, prosody, and talker characteristics in selective attention. The Journal of the Acoustical Society of America, 107, 970–977.

    Article  PubMed  Google Scholar 

  • Deutsch, D. (2013). The Psychology of Music (3rd ed.). San Diego: Academic Press.

    Google Scholar 

  • Duifhuis, H., Willems, L. F., & Sluyter, R. (1982). Measurement of pitch in speech: An implementation of goldsteins theory of pitch perception. The Journal of the Acoustical Society of America, 71, 1568–1580.

    Article  PubMed  Google Scholar 

  • Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501–517. https://doi.org/10.1037//0096-3445.113.4.501.

    Article  Google Scholar 

  • Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2), 161–177. https://doi.org/10.1037//0096-3445.123.2.161.

    Article  Google Scholar 

  • Ellis, R. J., Norton, A. C., Overy, K., Winner, E., Alsop, D. C., & Schlaug, G. (2012). Differentiating maturational and training influences on fMRI activation during music processing. NeuroImage, 60, 1902–1912.

    Article  PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/brm.41.4.1149.

    Article  PubMed  Google Scholar 

  • Fiveash, A., Thompson, W. F., Badcock, N. A., & Mcarthur, G. (2018). Syntactic processing in music and language: Effects of interrupting auditory streams with alternating timbres. International Journal of Psychophysiology, 129, 31–40. https://doi.org/10.1016/j.ijpsycho.2018.05.003.

    Article  PubMed  Google Scholar 

  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23, 9240–9245.

    Article  PubMed  Google Scholar 

  • Greenberg, A.S. (2009). Uncertainty as a Guiding Principle in the Strategic Allocation of Attention to Objects, Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD. [ProQuest Publication No. AAT 3410160]

  • Greenberg, A. S., & Gmeindl, L. (2008). Strategic control of attention to objects and locations. Journal of Neuroscience, 28(3), 564–565. https://doi.org/10.1523/jneurosci.4386-07.2008.

    Article  PubMed  Google Scholar 

  • Greenberg, A. S., Rosen, M., Cutrone, E., & Behrmann, M. (2015). The effects of visual search efficiency on object-based attention. Attention, Perception, & Psychophysics, 77(5), 1544–1557. https://doi.org/10.3758/s13414-015-0892-.

    Article  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Revies Neuroscience, 5, 887–892.

    Article  Google Scholar 

  • Grimault, N., Bacon, S. P., & Micheyl, C. (2002). Auditory stream segregation on the basis of amplitude-modulation rate. The Journal of the Acoustical Society of America, 111, 1340–1348.

    Article  PubMed  Google Scholar 

  • Huron, D. B. (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge: MIT press.

    Book  Google Scholar 

  • Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29, 3019–3025.

    Article  PubMed  Google Scholar 

  • Irvine, D. R. (2018). Plasticity in the auditory system. Hearing Research, 362, 61–73. https://doi.org/10.1016/j.heares.2017.10.011.

    Article  PubMed  Google Scholar 

  • Koelsch, S. (2011). Toward a neural basis of music perception—A review and updated model. Frontier in Psychology. https://doi.org/10.3389/fpsyg.2011.00110.

    Article  Google Scholar 

  • Koelsch, S., & Jentschke, S. (2008). Short-term effects of processing musical syntax: An ERP study. Brain Research, 1212, 55–62.

    Article  PubMed  Google Scholar 

  • Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9(12), 578–584. https://doi.org/10.1016/j.tics.2005.10.001.

    Article  PubMed  Google Scholar 

  • Koffka, K., & Hartshorne, C. S. (1935). The philosophy and psychology of sensation. The American Journal of Psychology, 47(4), 716. https://doi.org/10.2307/1416027.

    Article  Google Scholar 

  • Krueger, Joel. (2011). Doing things with music. Phenomenology and the Cognitive Sciences, 10(1), 1–22.

    Article  Google Scholar 

  • Kubovy, M., & Van Valkenburg, D. (2001). Auditory and visual objects. Cognition, 80, 97–126.

    Article  PubMed  Google Scholar 

  • Kulkarni, M., Potkonjak, K., Randall, R., & Greenberg A.S. (2020). Music expertise alters the perception of auditory objects. PsyArXiv. Web

  • Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27, 308–314.

    Article  PubMed  Google Scholar 

  • Lawrance, E. L., Harper, N. S., Cooke, J. E., & Schnupp, J. W. (2014). Temporal predictability enhances auditory detection. The Journal of the Acoustical Society of America. https://doi.org/10.1121/1.4879667.

    Article  PubMed  Google Scholar 

  • Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology., 140, 1–55.

    Google Scholar 

  • Margulis, E. H., & Simchy-Gross, R. (2016). Repetition enhances the musicality of randomly generated tone sequences. Music Perception, 33(4), 509–514. https://doi.org/10.1525/mp.2016.33.4.509.

    Article  Google Scholar 

  • Marozeau, J., Innes-Brown, H., & Blamey, P. J. (2013). The effect of timbre and loudness on melody segregation. Music Perception: An Interdisciplinary Journal, 30(3), 259–274. https://doi.org/10.1525/mp.2012.30.3.259.

    Article  Google Scholar 

  • Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., … Glowacki, L. (2019). Universality and diversity in human song. Science, 366(6468), eaax0868. https://doi.org/10.1126/science.aax0868.

    Article  PubMed  PubMed Central  Google Scholar 

  • Micheyl, C., & Oxenham, A. J. (2010). Objective and subjective psychophysical measures of auditory stream integration and segregation. Journal of the Association for Research in Otolaryngology, 11(4), 709–724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, B. C. J., & Gockel, H. (2002). Factors influencing sequential stream segregation. Acta Acustica United with Acustica, 88, 320–333.

    Google Scholar 

  • Moore, B. C., & Gockel, H. E. (2012). Properties of auditory stream formation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1591), 919–931. https://doi.org/10.1098/rstb.2011.0355.

    Article  Google Scholar 

  • Mutschler, I., Schultze-Bonhage, A., Glauche, V., Demandt, E., Speck, O., & Ball, T. (2007). A rapid sound–action association effect in human insular cortex. PLoS One, 2, e259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelken, I. (2004). Processing of complex stimuli and natural scenes in the auditory cortex. Current Opinion in Neurobiology, 14(4), 474–480. https://doi.org/10.1016/j.conb.2004.06.005.

    Article  PubMed  Google Scholar 

  • Nicora, G., Greenberg, A.S. (2018). Object Closure Modulates the Strength of Object- Based Attentional Filtering. PsyArXiv. Web

  • Palmer, S. E. (1999). Vision science: Photons to phenomenology. Cambridge: MIT Press.

    Google Scholar 

  • Palmer, E. M., Kellman, P. J., & Shipley, T. F. (2006). A theory of dynamic occluded and illusory object perception. Journal of Experimental Psychology, 135, 515–541.

    Google Scholar 

  • Patel, A. D. (2010). Music, language, and the brain. Oxford: Oxford University Press.

    Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.

    Article  PubMed  Google Scholar 

  • Peterson, M. A., & Kimchi, R. (2013). Perceptual Organization. In D. Reisberg (Ed.), Handbook of cognitive psychology (pp. 9–31). Oxford: Oxford University Press.

    Google Scholar 

  • Rajendran, V. G., Harper, N. S., Willmore, B. D., Hartmann, W. M., & Schnupp, J. W. (2013). Temporal predictability as a grouping cue in the perception of auditory streams. The Journal of the Acoustical Society of America. https://doi.org/10.1121/1.4811161.

    Article  PubMed  Google Scholar 

  • Randall, R., Greenberg, A. S. (2016). Principal Component Analysis of Musicality in Pitch Sequences. In: Proceedings of the 14th International Conference on Music Perception and Cognition, San Francisco, CA, pp 112–118.

  • Rasch, R. A. (1978). The perception of simultaneous notes such as in polyphonic music. Acta Acustica United with Acustica, 40, 21–33.

    Google Scholar 

  • Rodrigues, A. C., Loureiro, M. A., & Caramelli, P. (2010). Musical training, neuroplasticity and cognition. Dementia & Neuropsychologia, 4(4), 277–286. https://doi.org/10.1590/s1980-57642010dn40400005.

    Article  Google Scholar 

  • Al-Janabi, S., Strommer-Davidovich, N., Gabay, S., & Greenberg, A. G. (2020). Object- based attentional selection emerges late in the visual cortical hierarchy for objects of varying perceptual strength. Web: BioArXiv.

    Book  Google Scholar 

  • Schmuckler, M. A. (1989). Expectation in music: Investigation of melodic and harmonic processes. Music Perception, 7, 109–150.

    Article  Google Scholar 

  • Schreiner, C. E., & Polley, D. B. (2014). Auditory map plasticity: Diversity in causes and consequences. Current Opinion in Neurobiology, 24, 143–156. https://doi.org/10.1016/j.conb.2013.11.009.

    Article  PubMed  Google Scholar 

  • Seydell-Greenwald, A., Greenberg, A. S., & Rauschecker, J. P. (2013). Are you listening? Brain activation associated with sustained nonspatial auditory attention in the presence and absence of stimulation. Human Brain Mapping, 35(5), 2233–2252. https://doi.org/10.1002/hbm.22323.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34, 114–123.

    Article  PubMed  Google Scholar 

  • Shepard, K. N., Kilgard, M. P., & Liu, R. C. (2012). Experience-dependent plasticity and auditory cortex. Neural Correlates of Auditory Cognition Springer Handbook of Auditory Research. https://doi.org/10.1007/978-1-4614-2350-8_10.

    Article  Google Scholar 

  • Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in Cognitive Sciences, 12(5), 182–186. https://doi.org/10.1016/j.tics.2008.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinn-Cunningham, B. G., & Best, V. (2008). Selective Attention in Normal and Impaired Hearing. Trends in Amplification, 12(4), 283–299. https://doi.org/10.1177/1084713808325306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder, J. S., Carter, O. L., Lee, S.-K., Hannon, E. E., & Alain, C. (2008). Effects of context on auditory stream segregation. Journal of Experimental Psychology: Human Perception and Performance, 34(4), 1007–1016.

    PubMed  Google Scholar 

  • Szalárdy, O., Bendixen, A., Böhm, T. M., Davies, L. A., Denham, S. L., & Winkler, I. (2014). The effects of rhythm and melody on auditory stream segregation. The Journal of the Acoustical Society of America, 135(3), 1392–1405. https://doi.org/10.1121/1.4865196.

    Article  PubMed  Google Scholar 

  • Torgerson, W. S. (1958). Theory and methods of scaling. New York: Wiley.

    Google Scholar 

  • van Noorden, L.P.A.S. (1975). Temporal coherence in the perception of tone sequences. Institute for Perceptual Research.

  • Wayland, R., Herrera, E., & Kaan, E. (2010). Effects of musical experience and training on pitch contour perception. Journal of Phonetics, 38(4), 654–662. https://doi.org/10.1016/j.wocn.2010.10.001.

    Article  Google Scholar 

  • Wertheimer, M. (1924). Gestalt Theory. In: E. D. Ellis Address Before the Kant Society, Berlin, 7th December, 1924; reprinted in Wertheimer M (1950) in A Sourcebook of Gestalt Psychology, (Humanities, New York) (pp 1–11).

  • Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.

    Article  PubMed  Google Scholar 

  • Wong, P. C., Ciocca, V., Chan, A. H., Ha, L. Y., Tan, L., & Peretz, I. (2012). Effects of culture on musical pitch perception. PLoS ONE. https://doi.org/10.1371/journal.pone.0033424.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yost, W. A. (1994). Fundamentals of hearing: An introduction. Cambridge: Academic Press.

    Google Scholar 

  • Zimmermann, J. F., Moscovitch, M., & Alain, C. (2016). Attending to auditory memory. Brain Research, 1640, 208–221. https://doi.org/10.1016/j.brainres.2015.11.032.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by a Rothberg Research Award in Human Brain Imaging (R.R.), NIH Grant number T32-MH19983 (A.S.G.) and the University of Wisconsin-Milwaukee Research Growth Initiative (A.S.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Randall.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Participants provided informed consent prior to the experiment in accordance with standards set forth by the Institutional Review Board of Carnegie Mellon University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurariy, G., Randall, R. & Greenberg, A.S. Manipulation of low-level features modulates grouping strength of auditory objects. Psychological Research 85, 2256–2270 (2021). https://doi.org/10.1007/s00426-020-01391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-020-01391-4

Navigation