Skip to main content
Log in

Individual movement features during prism adaptation correlate with after-effects and interlimb transfer

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The human nervous system displays such plasticity that we can adapt our motor behavior to various changes in environmental or body properties. However, how sensorimotor adaptation generalizes to new situations and new effectors, and which factors influence the underlying mechanisms, remains unclear. Here we tested the general hypothesis that differences across participants can be exploited to uncover what drives interlimb transfer. Twenty healthy adults adapted to prismatic glasses while reaching to visual targets with their dominant arm. Classic adaptation and generalization across movement directions were observed but transfer to the non-dominant arm was not significant and inter-individual differences were substantial. Interlimb transfer resulted for some participants in a directional shift of non-dominant arm movements that was consistent with an encoding of visuomotor adaptation in extrinsic coordinates. For some other participants, transfer was consistent with an intrinsic coordinate system. Simple and multiple regression analyses showed that a few kinematic parameters such as peak acceleration (or peak velocity) and variability of movement direction were correlated with interlimb transfer. Low peak acceleration and low variability were related to extrinsic transfer, while high peak acceleration and high variability were related to intrinsic transfer. Motor variability was also positively correlated with the magnitude of the after-effect systematically observed on the dominant arm. Overall, these findings on unconstrained movements support the idea that individual movement features could be linked to the sensorimotor adaptation and its generalization. The study also suggests that distinct movement characteristics may be related to different coordinate frames of action representations in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander, M. S., Flodin, B. W., & Marigold, D. S. (2011). Prism adaptation and generalization during visually guided locomotor tasks. Journal of Neurophysiology, 106(2), 860–871.

    Article  PubMed  Google Scholar 

  • Berniker, M., Franklin, D. W., Flanagan, J. R., Wolpert, D. M., & Kording, K. (2014). Motor learning of novel dynamics is not represented in a single global coordinate system: Evaluation of mixed coordinate representations and local learning. Journal of Neurophysiology, 111(6), 1165–1182.

    Article  PubMed  Google Scholar 

  • Berniker, M., & Kording, K. (2008). Estimating the sources of motor errors for adaptation and generalization. Nature Neuroscience, 11(12), 1454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brayanov, J. B., Press, D. Z., & Smith, M. A. (2012). Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations. Journal of Neuroscience, 32(43), 14951–14965.

    Article  PubMed  Google Scholar 

  • Carroll, T. J., Poh, E., & de Rugy, A. (2014). New visuomotor maps are immediately available to the opposite limb. Journal of Neurophysiology, 111(11), 2232–2243.

    Article  PubMed  Google Scholar 

  • Chase, C., & Seidler, R. (2008). Degree of handedness affects intermanual transfer of skill learning. Experimental Brain Research, 190(3), 317–328.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choe, C. S., & Welch, R. B. (1974). Variables affecting the intermanual transfer and decay of prism adaptation. Journal of Experimental Psychology, 102(6), 1076.

    Article  PubMed  Google Scholar 

  • Cohen, M. M. (1967). Continuous versus terminal visual feedback in prism aftereffects. Perceptual and Motor Skills, 24(3), 1295–1302.

    Article  PubMed  Google Scholar 

  • Cohen, M. M. (1973). Visual feedback, distribution of practice, and intermanual transfer of prism aftereffects. Perceptual and Motor Skills, 37(2), 599–609.

    Article  PubMed  Google Scholar 

  • Criscimagna-Hemminger, S. E., Donchin, O., Gazzaniga, M. S., & Shadmehr, R. (2003). Learned dynamics of reaching movements generalize from dominant to nondominant arm. Journal of Neurophysiology, 89(1), 168–176.

    Article  PubMed  Google Scholar 

  • DiZio, P., & Lackner, J. R. (1995). Motor adaptation to Coriolis force perturbations of reaching movements: Endpoint but not trajectory adaptation transfers to the nonexposed arm. Journal of Neurophysiology, 74(4), 1787–1792.

    Article  PubMed  Google Scholar 

  • Donchin, O., Rabe, K., Diedrichsen, J., Lally, N., Schoch, B., Gizewski, E. R., & Timmann, D. (2012). Cerebellar regions involved in adaptation to force field and visuomotor perturbation. Journal of Neurophysiology, 107(1), 134–147.

    Article  PubMed  Google Scholar 

  • Faisal, A. A., Selen, L. P., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin, D. W., Batchelor, A. V., & Wolpert, D. M. (2016). The sensorimotor system can sculpt behaviorally relevant representations for motor learning. eNeuro, 3(4), ENEURO-E0070.

    Article  Google Scholar 

  • Galea, J. M., Miall, R. C., & Woolley, D. G. (2007). Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces. Experimental Brain Research, 182(2), 267–273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (1998). Cognitive neuroscience: The biology of the mind. New York: WW Norton & Co.

    Google Scholar 

  • Ghahramani, Z., Wolpert, D. M., & Jordan, M. I. (1996). Generalization to local remappings of the visuomotor coordinate transformation. Journal of Neuroscience, 16(21), 7085–7096.

    Article  PubMed  Google Scholar 

  • Haith, A., & Vijayakumar, S. (2009). Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models. Biological Cybernetics, 100(1), 81–95.

    Article  PubMed  Google Scholar 

  • Hamilton, C. R. (1964). Intermanual transfer of adaptation to prisms. The American Journal of Psychology, 77(3), 457–462.

    Article  PubMed  Google Scholar 

  • Harris, C. S. (1963). Adaptation to displaced vision: Visual, motor, or proprioceptive change? Science, 140(3568), 812–813.

    Article  PubMed  Google Scholar 

  • Hay, L., & Brouchon, M. (1972). Analysis of reorganization of visuomotor coordination in humans. Generalization of adaptation to prismatic deviation of the visual space. L’annee psychologique, 72(1), 25–38.

    Article  PubMed  Google Scholar 

  • Held, R., & Freedman, S. J. (1963). Plasticity in human sensorimotor control. Science, 142(3591), 455–462.

    Article  PubMed  Google Scholar 

  • Herzfeld, D. J., & Shadmehr, R. (2014). Motor variability is not noise, but grist for the learning mill. Nature Neuroscience, 17(2), 149.

    Article  PubMed  Google Scholar 

  • He, K., Liang, Y., Abdollahi, F., Bittmann, M. F., Kording, K., & Wei, K. (2016). The statistical determinants of the speed of motor learning. PLoS Computational Biology, 12(9), e1005023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joiner, W. M., Brayanov, J. B., & Smith, M. A. (2013). The training schedule affects the stability, not the magnitude, of the interlimb transfer of learned dynamics. Journal of Neurophysiology, 110(4), 984–998.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science, 285(5436), 2136–2139.

    Article  PubMed  Google Scholar 

  • Kakei, S., Hoffman, D. S., & Strick, P. L. (2001). Direction of action is represented in the ventral premotor cortex. Nature Neuroscience, 4(10), 1020.

    Article  PubMed  Google Scholar 

  • Kalil, R. E., & Freedman, S. J. (1966). Intermanual transfer of compensation for displaced vision. Perceptual and Motor Skills, 22(1), 123–126.

    Article  PubMed  Google Scholar 

  • Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231.

    Article  PubMed  Google Scholar 

  • Kitazawa, S., Kimura, T., & Uka, T. (1997). Prism adaptation of reaching movements: Specificity for the velocity of reaching. Journal of Neuroscience, 17(4), 1481–1492.

    Article  PubMed  Google Scholar 

  • Krakauer, J. W., Mazzoni, P., Ghazizadeh, A., Ravindran, R., & Shadmehr, R. (2006). Generalization of motor learning depends on the history of prior action. PLoS Biology, 4(10), e316.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krakauer, J. W., Pine, Z. M., Ghilardi, M.-F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20(23), 8916–8924.

    Article  PubMed  Google Scholar 

  • Lefumat, H. Z., Miall, R. C., Cole, J. D., Bringoux, L., Bourdin, C., Vercher, J.-L., & Sarlegna, F. R. (2016). Generalization of force-field adaptation in proprioceptively-deafferented subjects. Neuroscience Letters, 616, 160–165.

    Article  PubMed  Google Scholar 

  • Lefumat, H. Z., Vercher, J.-L., Miall, R. C., Cole, J., Buloup, F., Bringoux, L., Bourdin, C., & Sarlegna, F. R. (2015). To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning. Journal of Neurophysiology, 114(5), 2764–2774.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malfait, N., & Ostry, D. J. (2004). Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? Journal of Neuroscience, 24(37), 8084–8089.

    Article  PubMed  Google Scholar 

  • Malfait, N., Shiller, D. M., & Ostry, D. J. (2002). Transfer of motor learning across arm configurations. Journal of Neuroscience, 22(22), 9656–9660.

    Article  PubMed  Google Scholar 

  • Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996). Throwing while looking through prisms: II. Specificity and storage of multiple gaze—throw calibrations. Brain, 119(4), 1199–1211.

    Article  PubMed  Google Scholar 

  • Mattar, A. A., & Ostry, D. J. (2010). Generalization of dynamics learning across changes in movement amplitude. Journal of Neurophysiology, 104(1), 426–438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzoni, P., Hristova, A., & Krakauer, J. W. (2007). Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. Journal of Neuroscience, 27(27), 7105–7116.

    Article  PubMed  Google Scholar 

  • McDougle, S. D., Ivry, R. B., & Taylor, J. A. (2016). Taking aim at the cognitive side of learning in sensorimotor adaptation tasks. Trends in Cognitive Sciences, 20(7), 535–544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michel, C., Pisella, L., Prablanc, C., Rode, G., & Rossetti, Y. (2007). Enhancing visuomotor adaptation by reducing error signals: Single-step (aware) versus multiple-step (unaware) exposure to wedge prisms. Journal of Cognitive Neuroscience, 19(2), 341–350.

    Article  PubMed  Google Scholar 

  • Morton, S. M., & Bastian, A. J. (2004). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92(4), 2497–2509.

    Article  PubMed  Google Scholar 

  • Mostafa, A. A., Salomonczyk, D., Cressman, E. K., & Henriques, D. Y. (2014). Intermanual transfer and proprioceptive recalibration following training with translated visual feedback of the hand. Experimental Brain Research, 232(6), 1639–1651.

    Article  PubMed  Google Scholar 

  • O’Shea, J., Gaveau, V., Kandel, M., Koga, K., Susami, K., Prablanc, C., & Rossetti, Y. (2014). Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation. Neuropsychologia, 55, 15–24.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  Google Scholar 

  • Parmar, P. N., Huang, F. C., & Patton, J. L. (2015). Evidence of multiple coordinate representations during generalization of motor learning. Experimental Brain Research, 233(1), 1–13.

    Article  PubMed  Google Scholar 

  • Pekny, S. E., Izawa, J., & Shadmehr, R. (2015). Reward-dependent modulation of movement variability. Journal of Neuroscience, 35(9), 4015–4024.

    Article  PubMed  Google Scholar 

  • Redding, G. M., & Wallace, B. (1988). Components of prism adaptation in terminal and concurrent exposure: Organization of the eye-hand coordination loop. Perception & Psychophysics, 44(1), 59–68.

    Article  Google Scholar 

  • Redding, G. M., & Wallace, B. (2006). Generalization of prism adaptation. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1006.

    PubMed  Google Scholar 

  • Reichenbach, A., Franklin, D. W., Zatka-Haas, P., & Diedrichsen, J. (2014). A dedicated binding mechanism for the visual control of movement. Current Biology, 24(7), 780–785.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reppert, T. R., Rigas, I., Herzfeld, D. J., Sedaghat-Nejad, E., Komogortsev, O., & Shadmehr, R. (2018). Movement vigor as a traitlike attribute of individuality. Journal of Neurophysiology, 120(2), 741–757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossetti, Y., Rode, G., Pisella, L., Farné, A., Li, L., Boisson, D., & Perenin, M.-T. (1998). Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature, 395(6698), 166.

    Article  PubMed  Google Scholar 

  • Sainburg, R. L. (2014). Convergent models of handedness and brain lateralization. Frontiers in Psychology, 5, 1092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarlegna, F. R., & Bernier, P. M. (2010). On the link between sensorimotor adaptation and sensory recalibration. Journal of Neuroscience, 30(35), 11555–11557.

    Article  PubMed  Google Scholar 

  • Sarlegna, F. R., Gauthier, G. M., & Blouin, J. (2007). Influence of feedback modality on sensorimotor adaptation: Contribution of visual, kinesthetic, and verbal cues. Journal of Motor Behavior, 39(4), 247–258.

    Article  PubMed  Google Scholar 

  • Sarlegna, F. R., & Mutha, P. K. (2015). The influence of visual target information on the online control of movements. Vision Research, 110, 144–154.

    Article  PubMed  Google Scholar 

  • Seidler, R. D., Mulavara, A. P., Bloomberg, J. J., & Peters, B. T. (2015). Individual predictors of sensorimotor adaptability. Frontiers in Systems Neuroscience, 9, 100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4(6), e179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockinger, C., Thürer, B., Focke, A., & Stein, T. (2015). Intermanual transfer characteristics of dynamic learning: Direction, coordinate frame, and consolidation of interlimb generalization. Journal of Neurophysiology, 114(6), 3166–3176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stratton, G. M. (1896). Some preliminary experiments on vision without inversion of the retinal image. Psychological Review, 3(6), 611.

    Article  Google Scholar 

  • Sun, Z. Y., Pinel, P., Rivière, D., Moreno, A., Dehaene, S., & Mangin, J.-F. (2016). Linking morphological and functional variability in hand movement and silent reading. Brain Structure and Function, 221(7), 3361–3371.

    Article  PubMed  Google Scholar 

  • Tanaka, H., & Sejnowski, T. J. (2013). Computing reaching dynamics in motor cortex with Cartesian spatial coordinates. Journal of Neurophysiology, 109(4), 1182–1201.

    Article  PubMed  Google Scholar 

  • Taub, E., & Goldberg, I. A. (1973). Prism adaptation: Control of intermanual transfer by distribution of practice. Science, 180(4087), 755–757.

    Article  PubMed  Google Scholar 

  • Taylor, J. A., Wojaczynski, G. J., & Ivry, R. B. (2011). Trial-by-trial analysis of intermanual transfer during visuomotor adaptation. Journal of Neurophysiology, 106(6), 3157–3172.

    Article  PubMed  PubMed Central  Google Scholar 

  • ten Donkelaar, H. J., Lammens, M., Wesseling, P., Hori, A., Keyser, A., & Rotteveel, J. (2004). Development and malformations of the human pyramidal tract. Journal of Neurology, 251(12), 1429–1442.

    Article  PubMed  Google Scholar 

  • Therrien, A. S., Wolpert, D. M., & Bastian, A. J. (2016). Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain, 139(1), 101–114.

    Article  PubMed  Google Scholar 

  • Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor primitives. Nature, 407(6805), 742.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vangheluwe, S., Suy, E., Wenderoth, N., & Swinnen, S. P. (2006). Learning and transfer of bimanual multifrequency patterns: Effector-independent and effector-specific levels of movement representation. Experimental Brain Research, 170(4), 543–554.

    Article  PubMed  Google Scholar 

  • Von Helmholtz, H. (1867). Handbuch der physiologischen Optik, vol. 9. New York: Voss.

    Google Scholar 

  • Wallace, B., & Redding, G. M. (1979). Additivity in prism adaptation as manifested in intermanual and interocular transfer. Perception and Psychophysics, 25(2), 133–136.

    Article  PubMed  Google Scholar 

  • Wang, J., & Sainburg, R. L. (2003). Mechanisms underlying interlimb transfer of visuomotor rotations. Experimental Brain Research, 149(4), 520–526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, K., & Kording, K. (2009). Relevance of error: What drives motor adaptation? Journal of Neurophysiology, 101(2), 655–664.

    Article  PubMed  Google Scholar 

  • Wiestler, T., Waters-Metenier, S., & Diedrichsen, J. (2014). Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames. Journal of Neuroscience, 34(14), 5054–5064.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12(12), 739.

    Article  PubMed  Google Scholar 

  • Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Aix-Marseille University (International Relations Grant), the Royal Society (International Travel Grant), the CNES (APR Grants) and the CNRS (PICS, DEFISENS and AUTON programs). The funders had no role in study design, data collection and analysis.

Author information

Authors and Affiliations

Authors

Contributions

AGR, HL, J-LV, LB and FRS designed the experiment; AGR, HL and FRS performed experiments; AGR and FRS analyzed data; AGR prepared figures; AGR, HL, J-LVRCM, LB, CB and FRS interpreted results of experiments; AGR and FRS drafted manuscript; AGR, HL, J-LV, RCM, LB, CB and FRS edited manuscript and approved the final version for submission.

Corresponding authors

Correspondence to Alix G. Renault or Fabrice R. Sarlegna.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Compliance with ethical standards/ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional review board of the Institute of Movement Sciences and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renault, A.G., Lefumat, H., Miall, R.C. et al. Individual movement features during prism adaptation correlate with after-effects and interlimb transfer. Psychological Research 84, 866–880 (2020). https://doi.org/10.1007/s00426-018-1110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1110-8

Navigation