Skip to main content
Log in

The effect of SNARC compatibility on perceptual accuracy: evidence from object substitution masking

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

If given a relatively small number and asked to make a speeded parity judgment using the left and right responses, people typically respond faster with their left response. Conversely, if given a relatively large number, people usually respond faster with their right response. This finding, however, has primarily been shown using speeded tasks with response time as the primary measure. Here, we report an experiment testing if this remains to be the case in a non-speeded target identification. Using an object-substitution masking paradigm with no emphasis on response speed, number magnitude compatibility with the response hand influenced the accuracy of parity judgments. Given the non-speeded nature of the task, accuracy changes indicate that compatibility affects perception, rather than just response selection. This is explained using a common coding, feature integration approach in which stimuli and responses are represented in a common code and bidirectionally influence each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For the remainder of this paper, ‘correspondence’ will refer to the relationship between the task-irrelevant spatial information and response hand while ‘compatibility’ will refer to the relationship between the task-relevant feature and response hand.

  2. Of course, in Simon tasks the stimuli are generally static. The difference, however, is that the spatial information is not, strictly speaking, part of the stimuli so is not continuously processed while transforming the stimulus into a response.

References

  • Bae, G. Y., Choi, J. M., Cho, Y. S., & Proctor, R. W. (2009). Transfer of magnitude and spatial mappings to the SNARC effect for parity judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1506–1521.

    PubMed  Google Scholar 

  • Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1, 635–640. doi:10.1038/2870.

    Article  PubMed  Google Scholar 

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Cardoso-Leite, P., Mamassian, P., Schütz-Bosbach, S., & Waszak, F. (2010). A new look at sensory attenuation. Action–effect anticipation affects sensitivity, not response bias. Psychological Science, 21, 1740–1745.

    Article  PubMed  Google Scholar 

  • De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: a dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731–750. doi:10.1037/0096-1523.20.4.731.

    PubMed  Google Scholar 

  • Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: the psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129, 481–507.

    Article  Google Scholar 

  • Daar, M., & Pratt, J. (2008). Digits affect actions: the SNARC effect and response selection. Cortex, 44, 400–405.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Bossini, S., & Girauz, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.

    Article  Google Scholar 

  • Dehaene, S., Naccache, L., Le Clec’, H. G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., et al. (1998). Semantic priming. Nature, 395, 597–600.

    Article  PubMed  Google Scholar 

  • Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.

    PubMed  Google Scholar 

  • Elsner, B., & Hommel, B. (2004). Contiguity and contingency in action–effect learning. Psychological Research, 68, 138–154.

    Article  PubMed  Google Scholar 

  • Enns, J. T., & Di Lollo, V. (1997). Object substitution: a new form of masking in unattended visual locations. Psychological Science, 8, 135–139.

    Article  Google Scholar 

  • Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556.

    Article  PubMed  Google Scholar 

  • Fitts, P. M., & Seegar, C. M. (1953). S-R compatibility: spatial characteristics of the stimulus and response codes. Journal of Experimental Psychology, 46, 199–210.

    Article  PubMed  Google Scholar 

  • Gevers, W., Caessens, B., & Fias, W. (2005). Towards a common processing architecture underlying Simon and SNARC effects. European Journal of Cognitive Psychology, 17, 659–673.

    Article  Google Scholar 

  • Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006a). Further evidence that the SNARC effect is processed along a dual-route architecture: evidence from the lateralized readiness potential. Experimental psychology, 53, 58–68.

    Article  PubMed  Google Scholar 

  • Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006b). Numbers and space: a computational model of the SNARC effect. Journal of Experimental Psychology. Human Perception and Performance, 32, 32–44.

    Article  PubMed  Google Scholar 

  • Goodhew, S. C., Pratt, J., Dux, P. E., & Ferber, S. (2013). Substituting objects from consciousness: a review of object substitution masking. Psychonomic Bulletin & Review, 20, 859–877.

    Article  Google Scholar 

  • Gozli, D. G., Goodhew, S. C., Moskowitz, J. B., & Pratt, J. (2013). Ideomotor perception modulates visuospatial cueing. Psychological research, 77, 528–539.

    Article  PubMed  Google Scholar 

  • Herwig, A., Prinz, W., & Waszak, F. (2007). Two modes of sensorimotor integration in intention-based and stimulus-based actions. Quarterly Journal of Experimental Psychology, 60, 1540–1554.

    Article  Google Scholar 

  • Herwig, A., & Waszak, F. (2012). Action–effect bindings and ideomotor learning in intention- and stimulus-based actions. Frontiers in Psychology, 3, 444.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hommel, B. (1998). Event files: evidence for automatic integration of stimulus-response episodes. Visual Cognition, 5, 183–216.

    Article  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. The Behavioral and Brain Sciences, 24, 849–878. (discussion 878–937).

    Article  PubMed  Google Scholar 

  • Hommel, B., Proctor, R. W., & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 1–17.

    Article  PubMed  Google Scholar 

  • Kunde, W. (2004). Response priming by supraliminal and subliminal action effects. Psychological Research, 68, 91–96.

    Article  PubMed  Google Scholar 

  • Moretto, G., & di Pellegrino, G. (2008). Grasping numbers. Experimental Brain Research, 188, 505–515.

    Article  PubMed  Google Scholar 

  • Müsseler, J., & Hommel, B. (1997). Blindness to response-compatible stimuli. Journal of Experimental Psychology. Human Perception and Performance, 23, 861–872.

    Article  PubMed  Google Scholar 

  • Notebaert, W., Gevers, W., Verguts, T., & Fias, W. (2006). Shared spatial representations for numbers and space: the reversal of the SNARC and the Simon effects. Journal of Experimental Psychology: Human Perception and Performance, 32, 1197–1207.

    PubMed  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437–442.

    Article  PubMed  Google Scholar 

  • Pfister, R., Kiesel, A., & Hoffmann, J. (2011). Learning at any rate: action–effect learning for stimulus-based actions. Psychological Research, 75, 61–65.

    Article  PubMed  Google Scholar 

  • Pfister, R., Schroeder, P. A., & Kunde, W. (2013). SNARC struggles: instant control over spatial–numerical associations. Journal of Experimental Psychology. Learning, Memory, and Cognition, 39, 1953–1958.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129.

    Article  Google Scholar 

  • Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: a general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132, 416–442.

    Article  PubMed  Google Scholar 

  • Proctor, R. W., Miles, J. D., & Baroni, G. (2011). Reaction time distribution analysis of spatial correspondence effects. Psychonomic Bulletin & Review, 18(2), 242–266. doi:10.3758/s13423-011-0053-5.

    Article  Google Scholar 

  • Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274–278.

    Article  Google Scholar 

  • Roussel, C., Hughes, G., & Waszak, F. (2014). Action prediction modulates both neurophysiological and psychophysical indices of sensory attenuation. Frontiers in Human Neuroscience, 8, 115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: comparing SNARC effects with saccadic and manual responses. Perception & Psychophysics, 66, 651–664.

    Article  Google Scholar 

  • Shaki, S., & Fischer, M. H. (2008). Reading space into numbers–a cross-linguistic comparison of the SNARC effect. Cognition, 108, 590–599.

    Article  PubMed  Google Scholar 

  • Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232, 43–49.

    Article  PubMed  Google Scholar 

  • Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16, 328–331.

    Article  Google Scholar 

  • Simon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81, 174–176.

    Article  PubMed  Google Scholar 

  • Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: behavioral and electrophysiological evidence. Journal of Experimental Psychology. Human Perception and Performance, 28, 1345–1363.

    Article  PubMed  Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  PubMed  Google Scholar 

  • van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119, 114–119.

    Article  PubMed  Google Scholar 

  • Wolfensteller, U., & Ruge, H. (2011). On the timescale of stimulus-based action–effect learning. Quarterly Journal of Experimental Psychology, 64, 1273–1289.

    Article  Google Scholar 

  • Wood, G., Willmes, K., Nuerk, H. C., & Fischer, M. H. (2008). On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489–525.

    Google Scholar 

  • Wühr, P. (2005). Evidence for gating of direct response activation in the Simon task. Psychonomic Bulletin & Review, 12(2), 282–288.

    Article  Google Scholar 

  • Wühr, P., & Müsseler, J. (2001). Time course of the blindness to response-compatible stimuli. Journal of Experimental Psychology. Human Perception and Performance, 27, 1260–1270.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Natural Science and Engineering Research Council of Canada in the form of a Discovery Grant awarded to Jay Pratt. We would like to thank two anonymous reviewers for their helpful comments regarding this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Huffman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huffman, G., Pratt, J. The effect of SNARC compatibility on perceptual accuracy: evidence from object substitution masking. Psychological Research 80, 702–709 (2016). https://doi.org/10.1007/s00426-015-0679-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0679-4

Keywords

Navigation