Skip to main content
Log in

Information theory and artificial grammar learning: inferring grammaticality from redundancy

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

In artificial grammar learning experiments, participants study strings of letters constructed using a grammar and then sort novel grammatical test exemplars from novel ungrammatical ones. The ability to distinguish grammatical from ungrammatical strings is often taken as evidence that the participants have induced the rules of the grammar. We show that judgements of grammaticality are predicted by the local redundancy of the test strings, not by grammaticality itself. The prediction holds in a transfer test in which test strings involve different letters than the training strings. Local redundancy is usually confounded with grammaticality in stimuli widely used in the literature. The confounding explains why the ability to distinguish grammatical from ungrammatical strings has popularized the idea that participants have induced the rules of the grammar, when they have not. We discuss the judgement of grammaticality task in terms of attribute substitution and pattern goodness. When asked to judge grammaticality (an inaccessible attribute), participants answer an easier question about pattern goodness (an accessible attribute).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Collapsing ratings over participants, the correlation between mean ratings and zero-order redundancy was r(38) = 0.47, p < 0.01, whereas the correlation between mean ratings and first-order redundancy was r(38) = 0.45, p < 0.01. Although the correlations computed in this way are more impressive, they are subject to an overestimation bias (see Lorch & Myers, 1990).

  2. We made the change because letters H and N looked similar to one another.

  3. Collapsing over participants, the correlation between ratings and zero-order redundancy was r(38) = 0.77, p < 0.01, whereas the correlation with first-order redundancy was r(38) = 0.68, p < 0.01. Although the correlations computed in this way are more impressive, they are subject to an overestimation bias (see Lorch & Myers, 1990).

  4. Demonstrations of grammatical string completion and serial reaction time learning are reported using a standard version of the MINERVA 2 model. However, those demonstrations are reproducible using the holographic representation scheme in the HEM.

References

  • Altmann, G. T. M., Dienes, Z., & Goode, A. (1995). Modality independence of implicit learned grammatical knowledge. Journal of Experimental Psychology. Learning, Memory and Cognition, 21, 899–912.

    Article  Google Scholar 

  • Attneave, F. (1959). Applications of information theory to psychology: a summary of basic concepts, methods, and results. USA: Holt, Rinehart, and Winston.

    Google Scholar 

  • Berlyne, D. E. (1971). Aesthetics and psychobiology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Brooks, L. R. (1978). Nonanalytic concept formation and memory for instances. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 169–211). Hillsdale: Lawrence Erlbaum Associates Inc.

    Google Scholar 

  • Brooks, L. R., & Vokey, J. R. (1991). Abstract analogies and abstracted grammars: comments of Reber (1989) and Matthews et al. (1989). Journal of Experimental Psychology: General, 120, 316–323.

    Article  Google Scholar 

  • Chater, N. (1996). Reconciling simplicity and likelihood principles in perceptual organization. Psychological Review, 103, 566–591.

    Article  PubMed  Google Scholar 

  • Chubala, C. M., & Jamieson, R. K. (2013). Recoding and representation in artificial grammar learning. Behavior Research Methods, 45, 470–479.

    Article  PubMed  Google Scholar 

  • Clement, D. E., & Vernadoe, K. W. (1967). Pattern uncertainty and the discrimination of visual patterns. Perception and Psychophysics, 2(427), 431.

    Google Scholar 

  • Dienes, Z. (1992). Connectionist and memory-array models of artificial grammar learning. Cognitive Science, 16, 41–79.

    Article  Google Scholar 

  • Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dienes, Z., Broadbent, D. E., & Berry, D. C. (1991). Implicit and explicit knowledge bases in artificial grammar learning. Journal of Experimental Psychology. Learning, Memory and Cognition, 17, 875–887.

    Article  Google Scholar 

  • Dulany, D. E., Carlson, R. A., & Dewey, G. I. (1984). A case of syntactical learning and judgment: how conscious and how abstract? Journal of Experimental Psychology: General, 113, 541–555.

    Article  Google Scholar 

  • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

    Article  Google Scholar 

  • Garner, W. R. (1962). Uncertainty and structure as psychological concepts. Oxford: Wiley.

    Google Scholar 

  • Garner, W. R. (1970). Good patterns have few alternatives: information theory’s concept of redundancy helps in understanding the gestalt concept of goodness. American Scientist, 58, 34–42.

    PubMed  Google Scholar 

  • Garner, W. R. (1974). The processing of information and structure. New York: Wiley.

    Google Scholar 

  • Garner, W. R., & Clement, D. E. (1963). Goodness of pattern and pattern uncertainty. Journal of Verbal Learning and Verbal Behaviour, 2, 446–452.

    Article  Google Scholar 

  • Garner, W. R., & Degerman, R. L. (1967). Transfer in free-recall learning of overlapping lists of nonsense words. Journal of Verbal Learning and Verbal Behavior, 6, 922–927.

    Article  Google Scholar 

  • Garner, W. R., & Whitman, J. R. (1965). Form and amount of internal structure as factors in free-recall learning of nonsense words. Journal of Verbal Learning and Verbal Behavior, 4, 257–266.

    Article  Google Scholar 

  • Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: why biased minds make better inferences. Topics in Cognitive Science, 1, 107–143.

    Article  PubMed  Google Scholar 

  • Gigerenzer, G., Todd, P.M., & the ABC Research Group. (1999). Simple heuristics that make us smart. New York: Oxford University Press.

    Google Scholar 

  • Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4, 1126.

    Article  Google Scholar 

  • Hintzman, D. L. (1986). Schema abstraction in a multiple-trace memory model. Psychological Review, 93, 411428.

    Article  Google Scholar 

  • Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45, 188196.

    Article  Google Scholar 

  • Jamieson, R. K., & Hauri, B. (2012). An exemplar model of performance in the artificial grammar task: holographic representation. Canadian Journal of Experimental Psychology, 66, 98–105.

    Article  PubMed  Google Scholar 

  • Jamieson, R. K., & Mewhort, D. J. K. (2005). The influence of grammatical, local, and organizational redundancy on implicit learning: an analysis using information theory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31, 9–23.

    Article  PubMed  Google Scholar 

  • Jamieson, R. K., & Mewhort, D. J. K. (2009a). Applying an exemplar model to the artificial-grammar task: inferring grammaticality from similarity. Quarterly Journal of Experimental Psychology, 62, 550–575.

    Article  Google Scholar 

  • Jamieson, R. K., & Mewhort, D. J. K. (2009b). Applying an exemplar model to the serial reaction time task: anticipating from experience. Quarterly Journal of Experimental Psychology, 62, 1757–1783.

    Article  Google Scholar 

  • Jamieson, R. K., & Mewhort, D. J. K. (2010). Applying an exemplar model to the artificial-grammar task: string completion and performance on individual items. Quarterly Journal of Experimental Psychology., 63, 1014–1039.

    Article  Google Scholar 

  • Jamieson, R. K., & Mewhort, D. J. K. (2011). Grammaticality is inferred from global similarity: a reply to Kinder (2010). Quarterly Journal of Experimental Psychology, 64, 209–216.

    Article  Google Scholar 

  • Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114, 137.

    Article  Google Scholar 

  • Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics and Biases (pp. 49–81). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Kahneman, D., & Tversky, A. (1974). Judgment under uncertainty: heuristics and biases. Science, 185, 1124–1131.

    Article  PubMed  Google Scholar 

  • Kinder, A. (2000). The knowledge acquired during artificial grammar learning: testing the predictions of two connectionist models. Psychological Research, 63, 95–105.

    Article  PubMed  Google Scholar 

  • Kinder, A., & Assmann, A. (2000). Learning artificial grammars: no evidence for the acquisition of rules. Memory and Cognition, 28, 1321–1332.

    Article  PubMed  Google Scholar 

  • Kinder, A., & Lotz, A. (2009). Connectionist models of artificial grammar learning: what type of knowledge is acquired? Psychological Research, 73, 659–673.

    Article  PubMed  Google Scholar 

  • Knowlton, B. J., & Squire, L. R. (1994). The information acquired during artificial grammar learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20, 79–91.

    Article  PubMed  Google Scholar 

  • Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar learning depends on implicit acquisition of both abstract and exemplar-specific information. Journal of Experimental Psychology. Learning, Memory, and Cognition, 22, 169–181.

    Article  PubMed  Google Scholar 

  • Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science, 6, 299312.

    Google Scholar 

  • Lai, J., & Poletiek, F. J. (2011). The impact of adjacent-dependences and staged-input on the learnability of center-embedded hierarchical structures. Cognition, 118, 265–273.

    Article  PubMed  Google Scholar 

  • Lorch, R. F., & Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology. Learning, Memory, and Cognition, 16, 149–157.

    Article  PubMed  Google Scholar 

  • Lotz, A., & Kinder, A. (2006). Transfer in artificial grammar learning: the role of repetition information. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32, 707–715.

    Article  PubMed  Google Scholar 

  • Manza, L., & Reber, A. S. (1997). Representing artificial grammars: Transfer across stimulus forms and modalities. In D. C. Berry (Ed.), How implicit is implicit learning? (pp. 73–106). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Mathews, R. C., Buss, R. R., Stanley, W. B., Blanchard-Fields, F., Cho, J. R., & Druhan, B. (1989). Role of implicit and explicit processes in learning from examples: a synergistic effect. Journal of Experimental Psychology. Learning, Memory, and Cognition, 15, 1083–1100.

    Article  Google Scholar 

  • Meulemans, T., & der Linden, Van. (1997). Associative chunk strength in artificial grammar learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 23, 1007–1028.

    Article  Google Scholar 

  • Mewhort, D. J. K. (1972). Scanning, chunking, and the familiarity effect in tachistoscopic recognition. Journal of Experimental Psychology, 93, 69–71.

    Article  PubMed  Google Scholar 

  • Meyer, L. B. (1956). Emotion and meaning in music. Chicago: University of Chicago Press.

    Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 101, 343–352.

    Article  Google Scholar 

  • Miller, G. A. (1958). Free recall of redundant letter strings. Journal of Experimental Psychology, 56, 433–491.

    Google Scholar 

  • Miller, G. A., Bruner, J. S., & Postman, L. (1954). Familiarity of letter sequences and tachistoscopic identification. Journal of General Psychology, 50, 129–139.

    Article  Google Scholar 

  • Perruchet, P., & Pacteau, C. (1990). Synthetic grammar learning: implicit rule abstraction or explicit fragmentary knowledge? Journal of Experimental Psychology: General, 119, 264–275.

    Article  Google Scholar 

  • Poletiek, F. H., & Lai, J. (2012). How semantic biases in simple adjacencies affect learning a complex structure with non-adjacencies in AGL: a statistical account. Philosophical transactions of the Royal Society B-Biological Sciences, 367, 2046–2054.

    Article  PubMed Central  Google Scholar 

  • Poletiek, F. H., & van Schijndel, T. J. P. (2009). Stimulus set size and grammar coverage in artificial grammar learning. Psychonomic Bulletin and Review, 16, 10581064.

    Article  Google Scholar 

  • Poletiek, F. H., & Wolters, G. (2009). What is learned about fragments in artificial grammar learning: a transitional probabilities approach. Quarterly Journal of Experimental Psychology, 62, 868–876.

    Article  Google Scholar 

  • Pothos, E. M. (2010). An entropy model for artificial grammar learning. Frontiers in Psychology, 1, 16.

    PubMed Central  PubMed  Google Scholar 

  • Pothos, E. M., & Bailey, T. M. (2000). The importance of similarity in artificial grammar learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 26, 847–862.

    Article  PubMed  Google Scholar 

  • Pothos, E. M., & Ward, R. (2000). Symmetry, repetition, and figural goodness: an investigation of the Weight of Evidence Theory. Cognition, 75, B65–B78.

    Article  PubMed  Google Scholar 

  • Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855–863.

    Article  Google Scholar 

  • Reber, A. S. (1969). Transfer of syntactic structure in synthetic languages. Journal of Experimental Psychology, 81, 115–119.

    Article  Google Scholar 

  • Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118, 219–235.

    Article  Google Scholar 

  • Reber, A. S., & Allen, R. (1978). Analogic and abstraction strategies in synthetic grammar learning: a functionalist interpretation. Cognition, 6, 189–221.

    Article  Google Scholar 

  • Redington, M., & Chater, N. (1996). Transfer in artificial grammar learning: a re-evaluation. Journal of Experimental Psychology: General, 125, 123–138.

    Article  Google Scholar 

  • Royer, F. L., & Garner, W. R. (1966). Response uncertainty and perceptual difficulty of auditory temporal patterns. Perception and Psychophysics, 1, 41–47.

    Article  Google Scholar 

  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926–1928.

    Article  PubMed  Google Scholar 

  • Schnore, M. M., & Partington, J. T. (1967). Immediate memory for visual patterns: symmetry and amount of information. Psychonomic Science, 8(421), 422.

    Google Scholar 

  • Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Simon, H. A. (1957). Models of man. New York: Wiley.

    Google Scholar 

  • Tunney, R. J., & Shanks, D. R. (2003). Subjective measures of awareness and implicit cognition. Memory & Cognition, 31, 1060–1071.

    Article  Google Scholar 

  • van der Helm, P. A., & Leeuwenberg, E. L. J. (1996). Goodness of visual regularities: a non-transformational approach. Psychological Review, 103, 429–456.

    Article  PubMed  Google Scholar 

  • Vokey, J. R., & Brooks, L. R. (1992). Salience of item knowledge in learning artificial grammars. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18, 328–344.

    Article  Google Scholar 

  • Vokey, J. R., & Higham, P. (2005). Abstract analogies and positive transfer in artificial grammar learning. Canadian Journal of Experimental Psychology, 59, 54–61.

    Article  PubMed  Google Scholar 

  • Wright, R. L., & Whittlesea, B. W. A. (1998). Implicit learning of complex structures: active adaptation and selective processing in acquisition and application. Memory and Cognition, 26, 402–420.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by grants from the Natural Sciences and Engineering Research Council of Canada to RKJ and DJKM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall K. Jamieson.

Appendices

Appendix 1: materials in Experiment 1

Training strings

 BFBFFBKK

KGDKGDFF

CCJHJHFF

GDFFBFFB

 DKKGKGKG

DFBKGDKG

JKKGDFFB

KGKKGDKK

 KKKGDKKG

DFFFFBKG

HFBKKKKK

BFFBFBKG

 JKKGDFBK

BKKKGDFF

BFBKGKKK

GDFBFFFB

 CCJKGKKG

BKGKKGDK

DKGKKKKG

CCCCJHJH

 FFFFBKKG

BKKKGKKK

CCCJHJKG

HFBKGDKK

 HFBFFBKK

KKGKGDKG

CCCCJHJK

GDFBKKGK

 BFBKKKKK

CCJKKGDK

HFFFFFFF

GKGKKKKG

 GDKKGDFB

KKGDFFFB

DFBKGDKK

KGDKKKGK

 JHFBFBFB

HFBKKKKG

DFBFBKGK

BKKKGDKK

Test strings

 Grammatical

  TTTLLLRN

TLRTLLLL

SLRTLLRT

SZTTTLLL

  ZTLLRTTL

SLLLLLLR

LLRNRNZT

RNRTTTLL

  SLRNRNZT

YRNZTTLL

YRTTTTTT

LLLRNRTT

  RNZPNZTL

TLLLLLRT

NZTLLLRN

LLRNRNRN

  ZTTLLRTL

RTTLRNZT

YRNRNRTT

SZTTTLLR

 Ungrammatical

  SZPNRNZP

YRSTZYSN

TYLLNRYR

LPNPPYPP

  PRSRNYST

NSZPNTPT

PZLRZTTY

NRZNTYYS

  NYNLTSNP

ZZYYZZNY

SLTSZPRS

SLYPLSTZ

  ZLRPRRLL

YTSTPNRR

PRZLSTRR

TLNLPTYS

  YNZPSRLP

PTLTYZYT

PRLTPRPS

PSZSYYNZ

Appendix 2: materials in Experiment 2

Training strings

 BFGCFGKD

DGCDGCFD

GCDGCFDG

HKFDCDGK

 BKDGKFGK

DGCFDGKD

GKDCDCFD

HKFDGKFD

 CDCFDGCD

DGCFGKFG

GKDCDGCF

HKFGCDCF

 CDCFGKDG

FDCFDCDC

GKDCDGKD

KFDGCFDG

 CFDCDGCF

FDCFGCDC

GKDCFDGC

KFDGKFGK

 CFGKDGCF

FGCDGKDC

GKFDGCDC

KFGCDGKD

 DCDCDGCF

FGCDGKDG

GKFGKFDG

NCDCDGCD

 DCDCFGKD

FGKFDGCF

HDCDCFDG

NCDCFGCF

 DCDGCDCD

FGKFGCDC

HDCFDGKF

NCDCFGKD

 DCFGCDGC

GCDGCDGK

HKDCFGKF

NGKFDGKD

Test strings

 Grammatical

  JXRXSPSP

LPSPSTRX

JXSPSTXS

PJTRWLJT

  JXRXSTXR

RWJXSTXS

SPSTRWLP

SPJTXSTX

  LPSTXRWL

STRWJXST

STRWJXST

TRXRWLJX

  PSPSTRXS

WLJTXRWL

XRXSPSPJ

RWLPSPJX

  STRXRXRW

XSPSTRXS

LPJXRWJT

LJTXRWJT

 Ungrammatical

  TLRJTSRJ

RXTJWJRL

WLPRPXWS

JRLXWSXS

  XLPWXJXR

XPWRSJSP

XJXJWXTX

PJTXSJXP

  WSTLJLRP

PRLPJPWL

XSRXLRXJ

RSRSRJLP

  SPXWJPXW

WPRSJWXL

PWPWPTXW

JWRPTXTR

  SPSXLPLS

TWSPSRSR

XWLSTSXJ

RWJXLWXS

Appendix 3: materials in Experiment 3

Training strings

 

 Standard condition

    

  ZLBF

ZLBFJBJF

BJFJZ

BFJBF

ZLBFJBFL

ZFJBFJZ

  ZLBJL

BFJBJL

ZFJBF

ZLBJLBF

ZLBJLBFL

BJLBJLBF

  BJLBFJZ

ZLBJLZ

ZFJBJL

ZLBJLBFJ

BJLBJFJZ

ZLBJLBJL

  ZLBFJBJL

ZFJBFL

BFJBJF

BJFJBJLZ

BJFJBFJZ

BFJBFJBF

  BFJBJFL

BFJBJLZ

ZFJBFJ

BFJBJLBF

BJLBJL

BJFJBJFJ

 Transfer condition

  DMXQ

DMXQHXHQ

XHQHD

XQHXQ

DMXQHXQM

DQHXQHD

  DMXHM

XQHXHM

DQHXQ

DMXHMXQ

DMXHMXQM

XHMXHMXQ

  XHMXQHD

DMXHMD

DQHXHM

DMXHMXQH

XHMXHQHD

DMXHMXHM

  DMXQHXHM

DQHXQM

XQHXHQ

XHQHXHMD

XHQHXQHD

XQHXQHXQ

  XQHXHQM

XQHXHMD

DQHXQH

XQHXHMXQ

XHMXHM

XHQHXHQH

Test strings

 

 Grammatical

Low

Medium

High

   

BJLZ

BFJBFL

BJLBJLZ

   

ZLBJF

BJLBJF

ZLBJLBJF

   

ZLBFL

ZLBFJBF

BFJBFJ

   

ZFJBJLZ

BJLBJFL

ZLBFJBFJ

   

BJLBFL

ZFJBJFJ

BFJBFJZ

   

ZFJBJLBF

BJLBJFJ

BJFJBJF

   

BJFJBFL

BJFJBFJ

BJFJBJFL

   

BJFJBF

ZFJBJFJZ

ZFJBFJBF

   

 Ungrammatical

Low

Medium

High

   

JLBZ

BFLBFJ

BJLZBJL

   

BJFLZ

LBJFBJ

ZFLBJLBJ

   

ZBLFL

ZBFLJBF

JBFJBF

   

ZJBLJFZ

BJFLBJL

BFJLZBFJ

   

JBLFLB

BFJZJFJ

ZBFJBFJ

   

FBLJBJFZ

FLBJFBJ

FJBJFJB

   

BLFJFBJ

FJBFJBJ

JBJFLBJF

   

JFBFJB

ZBFJZJFJ

FBJFZBJF

   

Appendix 4: materials in Experiment 4

Training strings

 Standard condition

  BJFL

ZLBJLBFJ

BFJBFJBF

BFJBJFJZ

ZLBFJ

ZLBJLBJL

  ZFJBFJZ

ZLBFJBJF

BFJBF

BJFJBJFJ

BJFJBJL

ZFJBJL

  ZLBF

BJFJ

ZLBJFL

BFJBJFJ

ZFJZ

ZLBJFJZ

  ZLBJL

ZFJBFJ

BJLBF

BJFJBJLZ

ZLBJFJBF

BFJZ

  BFJBJL

ZLBFJBFL

ZLBFJZ

BJFJZ

BJLBFJ

BFJBJLZ

Transfer condition

 XHQM

DMXHMXQH

XQHXQHXQ

XQHXHQHD

DMXQH

DMXHMXHM

 DQHXQHD

DMXQHXHQ

XQHXQ

XHQHXHQH

XHQHXHM

DQHXHM

 DMXQ

XHQH

DMXHQM

XQHXHQH

DQHD

DMXHQHD

 DMXHM

DQHXQH

XHMXQ

XHQHXHMD

DMXHQHXQ

XQHD

 XQHXHM

DMXQHXQM

DMXQHD

XHQHD

XHMXQH

XQHXHMD

Test strings

 Grammatical

Low

Medium

High

   

BJLZ

BFJBFL

BJLBJLZ

   

ZLBJF

BJLBJF

ZLBJLBJF

   

ZLBFL

ZLBFJBF

BFJBFJ

   

ZFJBJLZ

BJLBJFL

ZLBFJBFJ

   

BJLBFL

ZFJBJFJ

BFJBFJZ

   

ZFJBJLBF

BJLBJFJ

BJFJBJF

   

BJFJBFL

BJFJBFJ

BJFJBJFL

   

BJFJBF

ZFJBJFJZ

ZFJBFJBF

   

 Ungrammatical

Low

Medium

High

   

JLBZ

BFLBFJ

BJLZBJL

   

BJFLZ

LBJFBJ

ZFLBJLBJ

   

ZBLFL

ZBFLJBF

JBFJBF

   

ZJBLJFZ

BJFLBJL

BFJLZBFJ

   

JBLFLB

BFJZJFJ

ZBFJBFJ

   

FBLJBJFZ

FLBJFBJ

FJBJFJB

   

BLFJFBJ

FJBFJBJ

JBJFLBJF

   

JFBFJB

ZBFJZJFJ

FBJFZBJF

   

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamieson, R.K., Nevzorova, U., Lee, G. et al. Information theory and artificial grammar learning: inferring grammaticality from redundancy. Psychological Research 80, 195–211 (2016). https://doi.org/10.1007/s00426-015-0660-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0660-2

Keywords

Navigation