Skip to main content
Log in

Timing the events of directional cueing

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

To explore the role of temporal context on voluntary orienting of attention, we submitted healthy participants to a spatial cueing task in which cue-target stimulus onset asynchronies (SOAs) were organized according to two-dimensional parameters: range and central value. Three ranges of SOAs organized around two central SOA values were presented to six groups of participants. Results showed a complex pattern of responses in terms of spatial validity (faster responses to correctly cued target) and preparatory effect (faster responses to longer SOAs). Responses to validly and neutrally cued targets were affected by the increase in SOA duration if the difference between longer and shorter SOA was large. On the contrary, responses to invalidly cued targets did not vary according to SOA manipulations. The observed pattern of cueing effects does not fit in the typical description of spatial attention working as a mandatory disengaging–shifting–engaging routine. In contrast, results rather suggest a mechanism based on the interaction between context sensitive top-down processes and bottom-up attentional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. All statistical power analyses reported here were performed using the GPOWER program (Faul, Erdfelder, Lang, & Buchner, 2007).

  2. In order to estimate the contribution of automatic sequential effects to the FP effect (see Los & Van den Heuvel, 2001), we made an analysis of the experimental findings that included the current SOA (short, central, long), the SOA of the previous trial, i.e., SOAn − 1 (short, central, long, catch), and cueing (valid, invalid, neutral, no cue) as within-subjects factors, and average SOA and SOA range as between-subjects variables. The ANOVA conducted on mean RTs revealed no contribution of SOAn − 1. SOAn − 1 had neither a main effect, F(3,108) = 1.69, nor did it interact with SOA in any case: SOAn – 1 × SOA, F(6,216) = 1; SOAn – 1 × SOA × range × average SOA, F < 1. Therefore, in this task, asymmetric sequential effects (see Los & Van den Heuvel, 2001), did not contribute to the foreperiod effect.

References

  • Alegria, J. (1974). The time course of preparation after a first peak: Some constraints of reacting mechanisms. The Quarterly Journal of Experimental Psychology, 26, 622–632.

    Article  Google Scholar 

  • Alegria, J., & Bertelson, P. (1970). Time uncertainty, number of alternatives and particular signal-response pair as determinants of choice reaction time. Acta Psychologica, 33, 36–44.

    Article  Google Scholar 

  • Cheal, M. L., & Lyon, D. R. (1991). Central and peripheral precuing of forced-choice discrimination. The Quarterly Journal of Experimental Psychology, 43A, 859–880.

    Article  Google Scholar 

  • Cheal, M. L., Lyon, D. R., & Gottlob, L. R. (1994). A framework for understanding the allocation of attention in location-precued discrimination. The Quarterly Journal of Experimental Psychology, 47, 699–739.

    Article  Google Scholar 

  • Cohen, J. (1977). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306–324.

    Article  PubMed Central  PubMed  Google Scholar 

  • Correa, A., Lupiáñez, J., & Tudela, P. (2005). Attentional preparation based on temporal expectancy modulates processing at the perceptual-level. Psychonomic Bulletin & Review, 12(2), 328–334.

    Article  Google Scholar 

  • Cui, X., Stetson, C., Montague, P. R., & Eagleman, D. M. (2009). Ready…go: Amplitude of the fMRI signal encodes expectation of cue arrival time. PLoS Biology, 7(8), e1000167.

    Article  PubMed Central  PubMed  Google Scholar 

  • Davis, G. J., & Gibson, B. S. (2012). Going rogue in the spatial cuing paradigm: High spatial validity is insufficient to elicit voluntary shifts of attention. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1192–1201.

    PubMed  Google Scholar 

  • Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105.

    Article  PubMed Central  PubMed  Google Scholar 

  • Drazin, D. H. (1961). Effects of foreperiod, foreperiod variability, and probability of stimulus occurrence on simple reaction time. Journal of Experimental Psychology, 62, 43–50.

    Article  PubMed  Google Scholar 

  • Duncan, J., Ward, R., & Shapiro, K. (1994). Direct measurement of attentional dwell time in human vision. Nature, 369, 313–315.

    Article  PubMed  Google Scholar 

  • Egeth, H. E., & Yantis, S. (1997). Visual attention: control, representation, and time course. Annual Review of Psychology, 48, 269–297.

    Article  PubMed  Google Scholar 

  • Elithorn, A., & Lawrence, C. (1955). Central inhibition: Some refractory observations. Quarterly Journal of Experimental Psychology, 11, 211–220.

    Google Scholar 

  • Elliott, R. (1973). Some confounding factors in the study of preparatory set in reaction time. Memory and Cognition, 1, 13–18.

    Article  PubMed  Google Scholar 

  • Eriksen, C. W., & St. James, J. D. (1986). Visual attention within and around the field of focal attention: a zoom lens model. Perception and Psychophysics, 40, 225–240.

    Article  PubMed  Google Scholar 

  • Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.

    Article  PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  Google Scholar 

  • Gabay, S., & Henik, A. (2010). Temporal expectancy modulates inhibition of return in a discrimination task. Psychonomic Bulletin and Review, 17(1), 47–51.

    Article  PubMed  Google Scholar 

  • Gallistel, C. R., & Gibbon, J. (2000). Time, rate, and conditioning. Psychological Review, 107(2), 289–344.

    Article  PubMed  Google Scholar 

  • Ghose, G. M., & Maunsell, J. H. R. (2002). Attentional modulation in visual cortex depends on task timing. Nature, 419, 616–620.

    Article  PubMed  Google Scholar 

  • Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon & L. G. Allan (Eds.), Annals of the New York Academy of Sciences, 423, Timing and time perception (pp. 52–77). New York: New York Academy of Sciences.

    Google Scholar 

  • Girardi, G., Antonucci, G., & Nico, D. (2013). Cueing spatial attention through timing and probability. Cortex, 49(1), 211–221.

    Article  PubMed  Google Scholar 

  • Gorea, A. (2011). Ticks per thought or thoughts per tick? A selective review of time perception with hints on future research. Journal of Physiology-Paris, 105, 153–163.

    Article  Google Scholar 

  • Grondin, S. (2001). From physical time to the first and second moments of psychological time. Psychological Bulletin, 127(1), 22–44.

    Article  PubMed  Google Scholar 

  • Grondin, S. (2010a). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.

    Article  Google Scholar 

  • Grondin, S. (2010b). Unequal Weber fractions for the categorization of brief temporal intervals. Attention, Perception, & Psychophysics, 72(5), 1422–1430.

    Article  Google Scholar 

  • Grondin, S., & Rammsayer, T. (2003). Variable foreperiods and temporal discrimination. The Quarterly Journal of Experimental Psychology, 56A, 731–765.

    Article  Google Scholar 

  • Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12(5), 360–365.

    Article  PubMed  Google Scholar 

  • Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in macaque area LIP. Nature Neuroscience, 8(2), 234–241.

    Article  PubMed  Google Scholar 

  • Jongen, E. M. M., & Smulders, F. T. Y. (2007). Sequence effects in a spatial cueing task: endogenous orienting is sensitive to orienting in the preceding trial. Psychological Research, 71(5), 516–523.

    Article  PubMed  Google Scholar 

  • Jonides, J. (1981). Voluntary versus automatic control over the mind’s eyes. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 187–203). Hillsdale: Erlbaum.

    Google Scholar 

  • Karlin, L. (1959). Reaction time as a function of foreperiod duration and variability. Journal of Experimental Psychology, 58, 185–191.

    Article  PubMed  Google Scholar 

  • Klein, R., & Hansen, E. (1990). Chronometric analysis of apparent spotlight failure in endogenous visual orienting. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 790–801.

    PubMed  Google Scholar 

  • Klemmer, E. T. (1956). Time uncertainty in simple reaction time. Journal of Experimental Psychology, 51, 179–184.

    Article  PubMed  Google Scholar 

  • Lambert, A., Naikar, N., McLachlan, K., & Aitken, V. (1999). A new component of visual orienting: Implicit effects of peripheral information and subthreshold cues on covert attention. Journal of Experimental Psychology: Human Perception and Performance, 25, 321–340.

    Google Scholar 

  • Los, S. A., & Schut, M. L. J. (2008). The effective time course of preparation. Cognitive Psychology, 57, 20–55.

    Article  PubMed  Google Scholar 

  • Los, S. A., & Van Den Heuvel, C. E. (2001). Intentional and unintentional contributions of nonspecific preparation during reaction time foreperiods. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 370–386.

    PubMed  Google Scholar 

  • Müller, H. J., & Findlay, J. M. (1988). The effect of visual attention on peripheral discrimination thresholds in single and multiple element displays. Acta Psychologica, 69, 129–155.

    Article  PubMed  Google Scholar 

  • Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330.

    PubMed  Google Scholar 

  • Müller-Gethmann, H., Ulrich, R., & Rinkenauer, G. (2003). Locus of the effect of temporal preparation: evidence from the lateralized readiness potential. Psychophysiology, 40, 597–611.

    Article  PubMed  Google Scholar 

  • Näätänen, R. (1970). The diminishing time-uncertainty with the lapse of time after the warning-signal in reaction time experiments with varying fore-periods. Acta Psychologica, 34, 399–419.

    Article  PubMed  Google Scholar 

  • Näätänen, R. (1972). Time uncertainty and occurrence uncertainty of the stimulus in a simple reaction time task. Acta Psychologica, 36, 492–503.

    Article  Google Scholar 

  • Nakayama, K. (1990). The iconic bottleneck and the tenuous link between early visual processing and perception. In C. Blakemore (Ed.), Vision: Coding and efficiency (pp. 411–422). Cambridge: Cambridge University Press.

    Google Scholar 

  • Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29, 1631–1647.

    Article  PubMed  Google Scholar 

  • Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89, 133–162.

    Article  Google Scholar 

  • Nobre, A. C., Correa, A., & Coull, J. T. (2007). The hazards of time. Current Opinion in Neurobiology, 17, 1–6.

    Article  Google Scholar 

  • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.

    Article  PubMed Central  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32, 3–25.

    Article  PubMed  Google Scholar 

  • Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78, 391–408.

    Article  Google Scholar 

  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X (pp. 531–556). Hillsdale: Erlbaum.

    Google Scholar 

  • Posner, M. I., Cohen, A., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Proceedings of the Royal Society of London, B, 298, 187–198.

    Article  Google Scholar 

  • Posner, M. I., Inhoff, A. W., Friedrich, F. J., & Cohen, A. (1987). Isolating attentional systems: a cognitive-anatomical analysis. Psychobiology, 15, 107–121.

    Google Scholar 

  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.

    Article  PubMed  Google Scholar 

  • Posner, M. I., Petersen, S. E., Fox, P., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240, 1627–1631.

    Article  PubMed  Google Scholar 

  • Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Attention and detection of signals. Journal of Experimental Psychology: General, 109(2), 160–174.

    Article  Google Scholar 

  • Ranzini, M., Dehaene, S., Piazza, M., & Hubbard, E. M. (2009). Neural mechanisms of attentional shifts due to irrelevant spatial and numerical cues. Neuropsychologia, 47(12), 2615–2624.

    Article  PubMed  Google Scholar 

  • Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews Neuroscience, 7, 367–379.

    Article  PubMed  Google Scholar 

  • Sanders, A. F. (1966). Expectancy: application and measurement. Acta Psychologica, 25, 293–313.

    Article  PubMed  Google Scholar 

  • Scharlau, I., Ansorge, U., & Horstmann, G. (2006). Latency facilitation in temporal-order judgments: time course of facilitation as a function of judgment type. Acta Psychologica, 122, 129–159.

    Article  PubMed  Google Scholar 

  • Sperling, G., & Reeves, A. (1980). Measuring the reaction time of a shift of visual attention. In R. S. Nickerson (Ed.), Attention and performance VIII. Hillsdale: Erlbaum.

    Google Scholar 

  • Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2008). Sequential effects within a short foreperiod context: evidence for the conditioning account of temporal preparation. Acta Psychologica, 129, 297–307.

    Article  PubMed  Google Scholar 

  • Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99.

    Article  PubMed  Google Scholar 

  • Thomas, E. A. (1967). Reaction-time studies: the anticipation and interaction of responses. British Journal of Mathematical and Statistical Psychology, 20, 1–29.

    Article  PubMed  Google Scholar 

  • Tipples, J. (2002). Eye gaze is not unique: automatic orienting in response to uninformative arrows. Psychonomic Bulletin & Review, 9, 314–318.

    Article  Google Scholar 

  • Ward, R., Duncan, J., & Shapiro, K. (1996). The slow time-course of visual attention. Cognitive Psychology, 30, 79–109.

    Article  PubMed  Google Scholar 

  • Wearden, J. H., & Ferrara, A. (1996). Stimulus range effects in temporal bisection by humans. The Quarterly Journal of Experimental Psychology, 49B, 24–44.

    Article  Google Scholar 

  • Wearden, J. H., & Lejeune, H. (2008). Scalar properties in human timing: conformity and violations. The Quarterly Journal of Experimental Psychology, 61(4), 569–587.

    Article  PubMed  Google Scholar 

  • Yantis, S. (1988). On analog movements of visual attention. Attention, Perception, & Psychophysics, 43(2), 203–206.

    Article  Google Scholar 

  • Yantis, S. (1998). Control of visual attention. In H. Pashler (Ed.), attention (pp. 223–256). London, UK: University College Press.

    Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the Compagnia San Paolo di Torino, Programma Neuroscienze 2008/09 (TECRONE-project). The authors wish to thank two anonymous reviewers for their valuable comments and Dr. Elena Daprati for her suggestions and assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Girardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girardi, G., Antonucci, G. & Nico, D. Timing the events of directional cueing. Psychological Research 79, 1009–1021 (2015). https://doi.org/10.1007/s00426-014-0635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0635-8

Keywords

Navigation