Skip to main content
Log in

Uncovering the interaction between empathetic pain and cognition

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated that empathizing with pain involves both cognitive and affective components of pain. How does empathetic pain impact cognition? To investigate this question, in the present study, participants performed a classic color–word Stroop task that followed a pain portraying or a corresponding control image. We found that observing pain experience in another had a basic slowing down effect on Reaction times (RTs) during neutral Stroop trials. Further, it affected cognition in a way that it decreased interference and increased facilitation. Moreover, our findings revealed that RTs during the incongruent and congruent trials were essentially unchanged by pain observing (empathy vs. control). The data are best accounted by a two-opposing effect model that empathetic pain impacts cognition through two different ways: it slows down performance in general, and facilitates performance during incongruent and congruent trials in particular. In this way, the present study also lends support to an idea that all components of empathy should be understood from an integrative approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For the present study, we also looked at the mean RT data for all participants. In fact, the median and mean RTs produced similar results, indicating that the data pattern did not arise from slow response on trials during empathetic condition. For a similar approach, see Bindemann, Burton, Hooge, Jenkins & de Haan, (2005), Schlaggar et al., (2002), Tamás Kincses et al., (2008), and Tipper, Driver and Weaver, (1991).

  2. Stroop facilitation effect is generally small, unstable and often referred to as “fragile” (Kalanthroff & Henik, 2013; MacLeod & MacDonald, 2000). Therefore, the non-significant Stroop facilitation effect here was not surprising. One reason perhaps is that in the present study, the neutral stimulus was a cross “X” (for a discussion, see MacLeod, 1991, p172).

  3. We are grateful to an anonymous reviewer for pointing this out to us.

References

  • Avenanti, A., Bueti, D., Galati, G., & Aglioti, S. M. (2005). Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nature Neuroscience, 8(7), 955–960.

    Article  PubMed  Google Scholar 

  • Bindemann, M., Burton, A. M., Hooge, I. T., Jenkins, R., & de Haan, E. H. (2005). Faces retain attention. Psychonomic Bulletin & Review, 12(6), 1048–1053.

    Article  Google Scholar 

  • Bishop, S. J. (2008). Trait anxiety and impoverished prefrontal control of attention. Nature Neuroscience, 12(1), 92–98.

    Article  PubMed  Google Scholar 

  • Booth, R., & Sharma, D. (2009). Stress reduces attention to irrelevant information: evidence from the Stroop task. Motivation and Emotion, 33, 412–418.

    Article  Google Scholar 

  • Botvinick, M., Jha, A. P., Bylsma, L. M., Fabian, S. A., Solomon, P. E., & Prkachin, K. M. (2005). Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. NeuroImage, 25, 312–319.

    Article  PubMed  Google Scholar 

  • Callaway, E. (1959). The influence of amobarbital (amylobarbitone) and methamphetamine on the focus of attention. Journal of Mental Science, 105, 382–392.

    PubMed  Google Scholar 

  • Callaway, E., & Dembo, D. (1958). Narrowed attention: a psychological phenomenon that accompanies a certain physiological change. Archives on Neurology and Psychiatry, 79, 74–90.

    Article  Google Scholar 

  • Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: an H2 15O PET study of Stroop task performance. NeuroImage, 2, 264–272.

    Article  PubMed  Google Scholar 

  • Chajut, E., & Algom, D. (2003). Selective attention improves under stress: implications for theories of social cognition. Journal of Personality and Social Psychology, 85, 231–248.

    Article  PubMed  Google Scholar 

  • Choi, J. M., Padmala, S., & Pessoa, L. (2012). Impact of state anxiety on the interaction between threat monitoring and cognition. NeuroImage, 59(2), 1912–1923.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen, J. (1992). A power primer. Psychological bulletin, 112(1), 155–159.

    Article  PubMed  Google Scholar 

  • Cohen, N., Henik, A., & Moyal, N. (2012). Executive control attenuates emotional effects––for high reappraisers only? Emotion, 12(5), 970–979.

    Article  PubMed  Google Scholar 

  • Davis, M. H. (1983). Measuring individual differences in empathy: evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113–126.

    Article  Google Scholar 

  • Davis, M. H. (1996). Empathy: a social psychological approach. Madison, WI: Westview Press.

    Google Scholar 

  • De Vignemont, F., & Jacob, P. (2012). What Is It like to Feel Another’s Pain? Philosophy of Science, 79(2), 295–316.

    Article  Google Scholar 

  • De Vignemont, F., & Singer, T. (2006). The empathic brain: how, when and why? Trends In Cognitive Sciences, 10(10), 435–441.

    Article  PubMed  Google Scholar 

  • Decety, J. (2010). To what extent is the experience of empathy mediated by shared neural circuits? Emotion Review, 2(3), 204–207.

    Article  Google Scholar 

  • Decety, J. (2011). The neuroevolution of empathy. Annals of the New York Academy of Sciences, 1231(1), 35–45.

    Article  PubMed  Google Scholar 

  • Decety, J., & Jackson, P. L. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Reviews, 3(2), 71–100.

    Article  PubMed  Google Scholar 

  • Durgin, F. H. (2003). Translation and competition among internal representations in a reverse Stroop effect. Perception and Psychophysics, 65, 367–378.

    Article  PubMed  Google Scholar 

  • Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological Review, 66, 183–201.

    Article  PubMed  Google Scholar 

  • Erthal, F. S., de Oliveira, L., Mocaiber, I., Pereira, M. G., MachadoPinheiro, W., Volchan, E., & Pessoa, L. (2005). Load-dependent modulation of affective picture processing. Cognitive, Affective, & Behavioral Neuroscience, 5, 388–395.

    Article  Google Scholar 

  • Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: the processing efficiency theory. Cognition and Emotion, 6, 409–434.

    Article  Google Scholar 

  • Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7, 336–353.

    Article  PubMed  Google Scholar 

  • Gallese, V. (2003). The manifold nature of interpersonal relations: the quest for a common mechanism. Philosophical transactions of the royal. Society London. B, 358, 517–528.

    Article  Google Scholar 

  • Gardner, D. G. (1990). Task complexity effects on non-task related movements: a test of activation theory. Organizational Behavior and Human Decision Processes, 45, 209–231.

    Article  Google Scholar 

  • Goldfarb, L., & Henik, A. (2007). Evidence for task conflict in the Stroop effect. Journal of Experimental Psychology: Human Perception and Performance, 33, 1170–1176.

    PubMed  Google Scholar 

  • Goubert, L., Craig, K. D., & Buysse, A. (2009). Perceiving others in pain: experimental and clinical evidence on the role of empathy. In J. Decety & W. Ickes (Eds.), The social neuroscience of empathy (pp. 153–166). Cambridge, MA: MIT Press.

    Chapter  Google Scholar 

  • Gu, X., Liu, X., Guise, K. G., Naidich, T. P., Hof, P. R., & Fan, J. (2010). Functional dissociation of the frontoinsular and anterior cingulate cortices in empathy for pain. The Journal of Neuroscience, 30(10), 3739–3744.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gu, X., Liu, X., Van Dam, N. T., Hof, P. R., & Fan, J. (2012). Cognitive-emotion integration in the Anterior insular. Cerebral Cortex, 23(1), 20–27.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartikainen, K. M., Ogawa, K. H., & Knight, R. T. (2000). Transient interference of right hemispheric function due to automatic emotional processing. Neuropsychologia, 38, 1576–1580.

    Article  PubMed  Google Scholar 

  • Hu, K., Bauer, A., Padmala, S., & Pessoa, L. (2012). Threat of bodily harm has opposing effects on cognition. Emotion, 12(1), 28–32.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu, K., Padmala, S., & Pessoa, L. (2013). Interactions between reward and threat during visual processing. Neuropsychologia, 51(9), 1763–1772.

    Article  PubMed  Google Scholar 

  • Huntsinger, J. R. (2013). Does Emotion Directly Tune the Scope of Attention? Current Directions in Psychological Science, 22(4), 265–270.

    Article  Google Scholar 

  • Ickes, W. J. (Ed.). (1997). Empathic accuracy. New York: The Guilford Press.

    Google Scholar 

  • Jackson, P. L., Meltzoff, A. N., & Decety, J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. Neuroimage, 24(3), 771–779.

    Article  PubMed  Google Scholar 

  • Kalanthroff, E., & Henik, A. (2013). Individual but not fragile: individual differences in task control predict Stroop facilitation. Consciousness and Cognition, 22(2), 413–419.

    Article  PubMed  Google Scholar 

  • Keysers, C. (2011) The Empathic Brain, Social Brain Press.

  • Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Reviews, 11, 417–428.

    PubMed  Google Scholar 

  • Klein, G. S. (1964). Semantic power measured through the interference of words with color-naming. American Journal of Psychology, 77, 576–588.

    Article  PubMed  Google Scholar 

  • Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron, 64(6), 922–930.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage., 54, 2492–2502.

    Article  PubMed  Google Scholar 

  • Lamm, C., Nusbaum, H. C., Meltzoff, A. N., & Decety, J. (2007). What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. Plos One, 2(12), e1292.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lim, S. L., Padmala, S., & Pessoa, L. (2009). Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions. Proceedings of the National Academy of Sciences, 106(39), 16841–16846.

    Article  Google Scholar 

  • Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490.

    Article  Google Scholar 

  • Luo, C. R. (1999). Semantic competition as the basis of Stroop interference: evidence from color–word matching tasks. Psychological Science, 10, 35–40.

    Article  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109, 163–203.

    Article  PubMed  Google Scholar 

  • MacLeod, C. M. (1992). The Stroop task: the” gold standard” of attentional measures. Journal of Experimental Psychology: General, 121(1), 12.

    Article  Google Scholar 

  • MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 10, 383–391.

    Article  Google Scholar 

  • Mathews, A., & Mackintosh, B. (1998). A cognitive model of selective processing in anxiety. Cognitive Therapy and Research, 22, 539–560.

    Article  Google Scholar 

  • Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450–452.

    PubMed  Google Scholar 

  • Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: insights from an fMRI study of the Stroop task. Brain Cognition, 49(3), 277–296.

    Article  PubMed  Google Scholar 

  • Miller, J. (1988). A warning about median reaction time. Journal of Experimental Psychology: Human Perception and Performance, 14(3), 539.

    PubMed  Google Scholar 

  • Morrison, I., Lloyd, D., di Pellegrino, G., & Roberts, N. (2004). Vicarious responses to pain in anterior cingulate cortex: is empathy a multisensory issue?. Cognitive, Affective, & Behavioral Neuroscience, 4(2), 270–278.

    Article  Google Scholar 

  • Okon-Singer, H., Alyagon, U., Kofman, O., Tzelgov, J., & Henik, A. (2011). Fear-related pictures deteriorate the performance of university students with high fear of snakes or spiders. Stress, 14(2), 185–193.

    PubMed  Google Scholar 

  • Okon-Singer, H., Lichtenstein-Vidne, L., & Cohen, N. (2013). Dynamic modulation of emotional processing. Biological Psychology, 92(3), 480–491.

    Article  PubMed  Google Scholar 

  • Okon-Singer, H., Tzelgov, J., & Henik, A. (2007). Distinguishing between automaticity and attention in the processing of emotionally significant stimuli. Emotion, 7(1), 147.

    Article  PubMed  Google Scholar 

  • Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23(11), 3419–3432.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13, 160–166.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pessoa, L., McKenna, M., Gutierrez, E., & Ungerleider, L. G. (2002). Neural processing of emotional faces requires attention. Proceedings of the National Academy of Sciences, USA, 99, 11458–11463.

    Article  Google Scholar 

  • Posner, M. I., & DiGirolamo, G. J. (1998). Executive attention: conflict, target detection, and cognitive control. In R. Parasuraman (Ed.), The attentive brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Posner, M. I., & Synder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: The Loyola Symposium (pp. 55–85). Hillsdale, NJ: Erlbaum.

  • Preston, S. D., & de Waal, F. B. M. (2002). Empathy: its ultimate and proximate bases. Behavioral and Brain Sciences, 25, 1–72.

    PubMed  Google Scholar 

  • Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Science, 288, 1769–1772.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.

    Article  Google Scholar 

  • Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532.

    Article  PubMed  Google Scholar 

  • Rhudy, J. L., & Meagher, M. W. (2000). Fear and anxiety: divergent effects on human pain thresholds. Pain, 84(1), 65–75.

    Article  PubMed  Google Scholar 

  • Saarela, M. V., Hlushchuk, Y., Williams, A. C. D. C., Schürmann, M., Kalso, E., & Hari, R. (2007). The compassionate brain: humans detect intensity of pain from another’s face. Cerebral Cortex, 17(1), 230–237.

    Article  PubMed  Google Scholar 

  • Schlaggar, B. L., Brown, T. T., Lugar, H. M., Visscher, K. M., Miezin, F. M., & Petersen, S. E. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296(5572), 1476–1479.

    Article  PubMed  Google Scholar 

  • Schneider, W., Eschmann, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh, PA: Psychology Software Tools.

    Google Scholar 

  • Shafer, A. T., Matveychuk, D., Penney, T., O’Hare, A. J., Stokes, J., & Dolcos, F. (2012). Processing of emotional distraction is both automatic and modulated by attention: evidence from an event-related fMRI investigation. Journal of Cognitive Neuroscience, 24(5), 1233–1252.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shek, D. T. (1993). The Chinese version of the State-Trait Anxiety Inventory: its relationship to different measures of psychological well-being. Journal of Clinical Psychology, 49(3), 349–358.

    Article  PubMed  Google Scholar 

  • Singer, T. (2006). The neuronal basis and ontogeny of empathy and mind reading: review of literature and implications for future research. Neuroscience and Biobehavioral Reviews, 30, 855–863.

    Article  PubMed  Google Scholar 

  • Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 81–96.

    Article  PubMed  Google Scholar 

  • Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 1157–1162.

    Article  PubMed  Google Scholar 

  • Singer, T., Seymour, B., O’Doherty, J. P., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439(7075), 466–469.

    Article  PubMed Central  PubMed  Google Scholar 

  • Spielberger, C. D. (1983). Manual for state-trait anxiety inventory. Palo Alto, California: Consulting Psychologists Press.

    Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 28, 643–662.

    Article  Google Scholar 

  • Tamás Kincses, Z., Johansen-Berg, H., Tomassini, V., Bosnell, R., Matthews, P. M., & Beckmann, C. F. (2008). Model-free characterization of brain functional networks for motor sequence learning using fMRI. Neuroimage, 39(4), 1950–1958.

    Article  PubMed  Google Scholar 

  • Tipper, S. P., Driver, J., & Weaver, B. (1991). Short report: object-centred inhibition of return of visual attention. The Quarterly Journal of Experimental Psychology, 43(2), 289–298.

    Article  PubMed  Google Scholar 

  • Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18(1), 166.

    Article  Google Scholar 

  • Valentini, E. (2010). The role of anterior insula and anterior cingulate in empathy for pain. Journal of Neurophysiology, 104(2), 584–586.

    Article  PubMed  Google Scholar 

  • Van Damme, S., Crombez, G., & Lorenz, J. (2007). Pain draws visual attention to its location: experimental evidence for a threat-related bias. The Journal of Pain, 8, 976–982.

    Article  PubMed  Google Scholar 

  • Van Damme, S., Legrain, V., Vogt, J., & Crombez, G. (2010). Keeping pain in mind: a motivational account of attention to pain. Neuroscience and Biobehavioral Reviews, 34, 204–213.

    Article  PubMed  Google Scholar 

  • Van Dillen, L., Heslenfeld, D. J., & Koole, S. (2009). Tuning down the emotional brain: an fMRI study of the effects of cognitive load on the processing of affective images. NeuroImage, 45, 1212–1219.

    Article  PubMed  Google Scholar 

  • Virzi, R. A., & Egeth, H. E. (1985). Toward a translational model of Stroop interference. Memory & Cognition, 13, 304–319.

    Article  Google Scholar 

  • Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). San Diego, CA: Academic Press.

    Google Scholar 

  • Yamada, M., & Decety, J. (2009). Unconscious affective processing and empathy: an investigation of subliminal priming on the detection of painful facial expressions. Pain, 143(1), 71–75.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Eve De Rosa and Adam Anderson for funding support. This research was also supported by a research grant to Shuchang He (Natural Science Foundation of China, Grant no. 81271491/H0920). We thank Luiz Pessoa, Deborah A. Pearson and Noga Cohen for their helpful comments during the early stages of this research. Thanks also to Xiaosi Gu and Jin Fan for their empathy stimuli package. In addition, we thank three anonymous reviewers for very constructive suggestions during the review process, and all the participants for their contribution.

Conflict of interest

K. Hu, Z. Fan and S. He declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Fan, Z. & He, S. Uncovering the interaction between empathetic pain and cognition. Psychological Research 79, 1054–1063 (2015). https://doi.org/10.1007/s00426-014-0634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0634-9

Keywords

Navigation