Skip to main content
Log in

Nonspecific competition underlies transient attention

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Cueing a target by abrupt visual stimuli enhances its perception in a rapid but short-lived fashion, an effect known as transient attention. Our recent study showed that when targets are cued at a constant, central location, the emergence of the transient performance pattern was dependent on the presence of competing distractors, whereas targets presented in isolation were enhanced in a sustained manner (Wilschut et al., PLoS ONE, 6:e27661, 2011). The current study examined in more detail whether the transience depends on the specific nature of the competition. We first replicated and extended the competition-dependent transient pattern for peripheral and variable target locations. We then investigated the role of feature similarity, compatibility, and proximity. Both competition by feature similarity and compatibility between the target and distractors were found to impair performance, but effects were additive with the effects of the cueing interval and did not change the transient performance function. Varying the spatial distance between target and distractors yielded mixed evidence, but here too a transient pattern could be observed for targets flanked by both close and far distractors. The results thus show that the presence or absence of competition determines whether attention appears transient or sustained, while the specific nature of the competition (in terms of location or feature) affects selection independent of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen, S. K., Fuchs, S., & Müller, M. M. (2011). Effects of feature-selective and spatial attention at different stages of visual processing. Journal of Cognitive Neuroscience, 23(1), 238–246.

    Article  PubMed  Google Scholar 

  • Andersen, S. K., Müller, M. M., & Hillyard, S. A. (2009). Color-selective attention need not be mediated by spatial attention. Journal of Vision, 9(6), 1–7.

    Article  PubMed  Google Scholar 

  • Baylis, G. C., & Driver, J. (1992). Visual parsing and response competition: the effect of grouping factors. Perception and Psychophysics, 51(2), 145–162.

    Article  PubMed  Google Scholar 

  • Becker, S. I. (2007). Irrelevant singletons in pop-out search: attentional capture or filtering costs? Journal of Experimental Psychology: Human Perception and Performance, 33(4), 764–787.

    PubMed  Google Scholar 

  • Benoni, H., & Tsal, Y. (2010). Where have we gone wrong? Perceptual load does not affect selective attention. Vision Research, 50, 1292–1298.

    Article  PubMed  Google Scholar 

  • Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226, 177–178.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. G., Kafaligönül, H., Öğmen, H., Mardon, L., Todd, S., & Ziegler, R. (2006). Meta- and paracontrast reveal differences between contour- and brightness-processing mechanisms. Vision Research, 46, 2645–2658.

    Article  PubMed  Google Scholar 

  • Carrasco, M. (2011). Visual attention: the past 25 years. Vision Research, 51, 1484–1525.

    Article  PubMed Central  PubMed  Google Scholar 

  • Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7(3), 308–313.

    Article  PubMed  Google Scholar 

  • Carrasco, M., Penpeci-Talgar, C., & Eckstein, M. (2000). Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement. Vision Research, 40, 1203–1215.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chastain, G., & Cheal, M. L. (1997). Facilitatory or inhibitory nontarget effects in the location-cuing paradigm. Consciousness and Cognition, 6, 328–347.

    Article  Google Scholar 

  • Chastain, G., Cheal, M. L., & Lyon, D. R. (1996). Attention and nontarget effects in the location-cueing paradigm. Perception and Psychophysics, 58(2), 300–309.

    Article  PubMed  Google Scholar 

  • Cheal, M., & Lyon, D. R. (1991). Central and peripheral precuing of forced-choice discrimination. The Quarterly Journal of Experimental Psychology, 43A(4), 859–880.

    Article  Google Scholar 

  • Dakin, S. C., Bex, P. J., Cass, J. R., & Watt, R. J. (2009). Dissociable effects of attention and crowding on orientation averaging. Journal of Vision, 9(28), 1–16.

    PubMed Central  Google Scholar 

  • Dosher, B. A., & Lu, Z.-L. (2000). Noise exclusion in spatial attention. Psychological Science, 11(2), 139–146.

    Article  PubMed  Google Scholar 

  • Enns, J. T., & Di Lollo, V. (1997). Object substitution: a new form of masking in unattended visual locations. Psychological Science, 8(2), 135–139.

    Article  Google Scholar 

  • Eriksen, B. A.,  & Eriksen, C. W.  (1974). Effects of noise letters upon the identification of target letters in a nonsearch task. Perception and Psychophysics, 16(1), 143–149.

    Article  Google Scholar 

  • Eriksen, C. W.,  & St. James, J. D. (1986). Visual attention within and around the field of focal attention: a zoom lens model. Perception and Psychophysics, 40(4), 225–240.

    Article  PubMed  Google Scholar 

  • Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847–858.

    PubMed  Google Scholar 

  • Greenwood, J. A., Bex, P. J., & Dakin, S. C. (2010). Crowding changes appearance. Current Biology, 20, 496–501.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayden, B. Y., & Gallant, J. L. (2005). Time course of attention reveals different mechanisms for spatial and feature-based attention in area V4. Neuron, 47, 637–643.

    Article  PubMed  Google Scholar 

  • He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383, 334–337.

    Article  PubMed  Google Scholar 

  • Hu, F. K., Samuel, A. G., & Chan, A. S. (2011). Eliminating inhibition of return by changing salient nonspatial attributes in a complex environment. Journal of Experimental Psychology: General, 140(1), 35–50.

    Article  Google Scholar 

  • Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43, 171–216.

    Article  PubMed  Google Scholar 

  • Jepma, M., Wagenmakers, E.-J., Band, G. P. H., & Nieuwenhuis, S. (2009). The effects of accessory stimuli on information processing: evidence from electrophysiology and a diffusion model analysis. Journal of Cognitive Neuroscience, 21(5), 847–864.

    Article  PubMed  Google Scholar 

  • Jonikaitis, D., & Theeuwes, J. (2013). Dissociating oculomotor contributions to spatial and feature-based selection. Journal of Neurophysiology, 110, 1525–1534.

    Article  PubMed  Google Scholar 

  • Kahneman, D., Treisman, A., & Burkell, J. (1983). The cost of visual filtering. Journal of Experimental Psychology: Human Perception and Performance, 9(4), 510–522.

    PubMed  Google Scholar 

  • Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147.

    Article  PubMed  Google Scholar 

  • Kooi, F. L., Toet, A., Tripathy, S. P., & Levi, D. M. (1994). The effect of similarity and duration on spatial interaction in peripheral vision. Spatial Vision, 8(2), 255–279.

    Article  PubMed  Google Scholar 

  • Kristjánsson, Á., Mackeben, M., & Nakayama, K. (2001). Rapid, object-based learning in the deployment of transient attention. Perception, 30, 1375–1387.

    Article  PubMed  Google Scholar 

  • Los, S. A., & Schut, M. L. J. (2008). The effective time course of preparation. Cognitive Psychology, 57, 20–55.

    Article  PubMed  Google Scholar 

  • Los, S. A., & Van der Burg, E. (2013). Sound speeds vision through preparation, not integration. Journal of Experimental Psychology: Human Perception and Performance, 39(6), 1612–1624.

    PubMed  Google Scholar 

  • Lupiáñez, J. (2010). Inhibition of return. In A. C. Nobre & J. Coull (Eds.), Attention and time (pp. 17–34). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Lupiáñez, J., Ruz, M., Funes, M. J., & Milliken, B. (2007). The manifestation of attentional capture: facilitation or IOR depending on task demands. Psychological Research, 71, 77–91.

    Article  PubMed  Google Scholar 

  • Mackeben, M., & Nakayama, K. (1993). Express attentional shifts. Vision Research, 33(1), 85–90.

    Article  PubMed  Google Scholar 

  • Malania, M., Herzog, M. H., & Westheimer, G. (2007). Grouping of contextual elements that affect vernier thresholds. Journal of Vision, 7(1), 1–17.

    Article  PubMed  Google Scholar 

  • Manassi, M., Sayim, B., & Herzog, M. H. (2012). Grouping, pooling, and when bigger is better in visual crowding. Journal of Vision, 12(13), 1–14.

    Article  Google Scholar 

  • Matthias, E., Bublak, P., Müller, H. J., Schneider, W. X., Krummenacher, J., & Finke, K. (2010). The influence of alertness on spatial and nonspatial components of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 38–56.

    PubMed  Google Scholar 

  • Morey, R. D. (2008). Confidence intervals from normalized data: a correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64.

    Google Scholar 

  • Müller, H. J., & Findlay, J. M. (1988). The effect of visual attention on peripheral discrimination thresholds in single and multiple element displays. Acta Psychologica, 69, 129–155.

    Article  PubMed  Google Scholar 

  • Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 315–330.

    PubMed  Google Scholar 

  • Müller-Gethmann, H., Ulrich, R., & Rinkenauer, G. (2003). Locus of the effect of temporal preparation: evidence from the lateralized readiness potential. Psychophysiology, 40, 597–611.

    Article  PubMed  Google Scholar 

  • Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29(11), 1631–1647.

    Article  PubMed  Google Scholar 

  • Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89(1), 133–162.

    Article  Google Scholar 

  • Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78(5), 391–408.

    Article  Google Scholar 

  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531–556). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.

    Article  PubMed  Google Scholar 

  • Posner, M. I., Rafal, R., Choate, L. S., & Vaughan, J. (1985). Inhibition of return: neural basis and function. Cognitive Neuropsychology, 2(3), 211–228.

    Article  Google Scholar 

  • Pratt, J., Hillis, J., & Gold, J. M. (2001). The effect of the physical characteristics of cues and targets on facilitation and inhibition. Psychonomic Bulletin & Review, 8(3), 489–495.

    Article  Google Scholar 

  • Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews Neuroscience, 7, 367–379.

    Article  PubMed  Google Scholar 

  • Saarela, T. P., Sayim, B., Westheimer, G., & Herzog, M. H. (2009). Global stimulus configuration modulates crowding. Journal of Vision, 9(5), 1–11.

    Article  Google Scholar 

  • Sayim, B., Westheimer, G., & Herzog, M. H. (2008). Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interaction in vernier acuity. Journal of Vision, 8(12), 1–9.

    Article  PubMed  Google Scholar 

  • Scharlau, I., Ansorge, U., & Horstmann, G. (2006). Latency facilitation in temporal-order judgments:time course of facilitation as a function of judgment type. Acta Psychologica, 122, 129–159.

    Article  PubMed  Google Scholar 

  • Scolari, M., Kohnen, A., Barton, B., & Awh, E. (2007). Spatial attention, preview, and popout: which factors influence critical spacing in crowded displays? Journal of Vision, 7(7), 1–23.

    Article  PubMed  Google Scholar 

  • Shiu, L., & Pashler, H. (1994). Negligible effect of spatial precuing on identification of single digits. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1037–1054.

    Google Scholar 

  • Shiu, L., & Pashler, H. (1995). Spatial attention and vernier acuity. Vision Research, 35(3), 337–343.

    Article  PubMed  Google Scholar 

  • Siebold, A., Van Zoest, W., & Donk, M. (2011). Oculomotor evidence for top-down control following the initial saccade. PLoS One, 6(9), e23552. doi:10.1371/journal.pone.0023552.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith, P. L., & Ratcliff, R. (2009). An integrated theory of attention and decision making in visual signal detection. Psychological Review, 116(2), 283–317.

    Article  PubMed  Google Scholar 

  • Smith, P. L., & Wolfgang, B. J. (2007). Attentional mechanisms in visual signal detection: the effects of simultaneous and delayed noise and pattern masks. Perception and Psychophysics, 69(7), 1093–1104.

    Article  PubMed  Google Scholar 

  • Strasburger, H. (2005). Unfocussed spatial attention underlies the crowding effect in indirect form vision. Journal of Vision, 5, 1024–1037.

    Article  PubMed  Google Scholar 

  • Strasburger, H., & Malania, M. (2013). Source confusion is a major cause of crowding. Journal of Vision, 13(24), 1–20.

    Google Scholar 

  • Suzuki, S., & Cavanagh, P. (1997). Focused attention distorts visual space: an attentional repulsion effect. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 443–463.

    PubMed  Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  PubMed  Google Scholar 

  • Treisman, A., Kahneman, D., & Burkell, J. (1983). Perceptual objects and the cost of filtering. Perception and Psychophysics, 33(6), 527–532.

    Article  PubMed  Google Scholar 

  • Tsal, Y., & Benoni, H. (2010). Diluting the burden of load: perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1645–1656.

    PubMed  Google Scholar 

  • Van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 746–759.

    PubMed  Google Scholar 

  • Vickery, T. J., Shim, W. M., Chakravarthi, R., Jiang, Y. V., & Luedeman, R. (2009). Supercrowding: weakly masking a target expands the range of crowding. Journal of Vision, 9(2), 1–15.

    Article  PubMed  Google Scholar 

  • Weichselgartner, E., & Sperling, G. (1987). Dynamics of automatic and controlled visual attention. Science, 238(4828), 778–780.

    Article  PubMed  Google Scholar 

  • Whitney, D., & Levi, D. M. (2011). Visual crowding: a fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilschut, A., Theeuwes, J., & Olivers, C. N. L. (2011). The time course of attention: selection is transient. PLoS One, 6(11), e27661.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilschut, A., Theeuwes, J., & Olivers, C. N. L. (2013). Early perceptual interactions shape the time course of cueing. Acta Psychologica, 144, 40–50.

    Article  PubMed  Google Scholar 

  • Wright, R. D., & Richard, C. M. (2000). Location cue validity affects inhibition of return of visual processing. Vision Research, 40, 2351–2358.

    Article  PubMed  Google Scholar 

  • Yantis, S., & Johnston, J. C. (1990). On the locus of visual selection: evidence from focused attention tasks. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 135–149.

    PubMed  Google Scholar 

  • Yeshurun, Y., & Rashal, E. (2010). Precueing attention to the target location diminishes crowding and reduces the critical distance. Journal of Vision, 10(16), 1–12.

    Google Scholar 

Download references

Acknowledgments

This work was supported by VIDI grant 452-06-007 from the Netherlands Organisation for Scientific Research (NWO) to CNLO.

Ethical standard

This research was approved by the Scientific and Ethical Board of the Faculty of Psychology and Education of the VU University (VCWE), and was conducted in accordance with the Declaration of Helsinki. All participants gave their informed consent prior to the experiment they took part in.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Wilschut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilschut, A., Theeuwes, J. & Olivers, C.N.L. Nonspecific competition underlies transient attention. Psychological Research 79, 844–860 (2015). https://doi.org/10.1007/s00426-014-0605-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0605-1

Keywords

Navigation