Skip to main content
Log in

Mood states influence cognitive control: the case of conflict adaptation

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Conflict adaptation can be measured by the “congruency sequence effect”, denoting the reduction of congruency effects after incongruent trials (where response conflict occurs) relative to congruent trials (without response conflict). Recently, it has been reported that conflict adaptation is larger in negative mood than in positive mood (van Steenbergen et al., Psychological Science 21:1629–1634, 2010). We conducted two experiments further investigating this important finding. Two different interference paradigms were applied to measure conflict adaptation: Experiment 1 was a Flanker task, Experiment 2 was a Stroop-like task. To get as pure a measure of conflict adaptation as possible, we minimized the influence of trial-to-trial priming effects by excluding all kinds of stimulus repetitions. Mood states were induced by presenting film clips with emotional content prior to the interference task. Three mood states were manipulated between subjects: amused, anxious, and sad. Across both interference paradigms, we consistently found conflict adaptation in negative, but not in positive mood. Taken together with van Steenbergen et al. (Psychological Science 21:1629–1634, 2010) findings, the results suggest that the negative-mood-triggered increase in conflict adaptation is a general phenomenon that occurs independently of the particular mood-induction procedure and interference paradigm involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The questionnaire data were also analyzed in 3 × 3 ANOVAs with Group (amused, anxious, sad) and time point (before mood induction, after mood induction, after RT experiment) as independent variables. For the STAI state scale, the ANOVA yielded a significant interaction, F(4,114) = 6.73, p < 0.01, as well as a main effect of time point, F(2,114) = 17.62, p < 0.01, and no effect of mood group, F < 1. A preplanned contrast comparing the time points “before mood induction” and “after mood induction” revealed a significant interaction, F(2,57) = 10.34, p < 0.01. The respective ANOVA on the PANAS negative affect scale also yielded a significant interaction, F(4,114) = 3.37, p = 0.01, as well as a main effect of time point, F(2,114) = 8.88, p < 0.01, and no main effect of mood group, F < 1. The preplanned contrast comparing the time points “before mood induction” and “after mood induction” revealed a significant interaction, F(2,57) = 5.02, p = 0.01. As to the PANAS positive affect scale, there was also a significant interaction, F(4,114) = 3.06, p = 0.02, a main effect of time point, F(2,114) = 7.63, p < 0.01, and no effect of mood group, F < 1. The preplanned contrast comparing the time points “before mood induction” and “after mood induction” did not reveal a significant interaction, F(2,57) = 1.45, p = 0.24.

  2. For the STAI state scale, the 3 × 3 ANOVA yielded a significant interaction, F(4,114) = 7.11, p < 0.01, as well as a main effect of time point, F(2,114) = 22.62, p < 0.01, and no effect of mood group, F < 1. A preplanned contrast comparing the time points “before mood induction” and “after mood induction” revealed a significant interaction, F(2,57) = 9.53, p < 0.01. The respective ANOVA on the PANAS negative affect scale did not yield a significant interaction, F(4,114) = 1.61, p = 0.18; there was a main effect of time point, F(2,114) = 14.40, p < 0.01, and no main effect of mood group, F < 1. The preplanned contrast comparing the time points “before mood induction” and “after mood induction” did not reveal a significant interaction with mood group, F(2,57) = 1.53, p = 0.23. As to the PANAS positive affect scale, the 3 × 3 interaction was not significant, F(4,114) = 1.79, p = 0.14; there was a main effect of time point, F(2,114) = 4.68, p = 0.01, and no effect of mood group, F < 1. The preplanned contrast comparing the time points “before mood induction” and “after mood induction” revealed a significant interaction, F(2,57) = 5.36, p < 0.01.

References

  • Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529–550.

    Article  PubMed  Google Scholar 

  • Becker, M. W., & Leinenger, M. (2011). Attentional selection is biased toward mood-congruent stimuli. Emotion, 11, 1248–1254.

    Article  PubMed  Google Scholar 

  • Blaney, P. H. (1986). Affect and memory: a review. Psychological Bulletin, 99, 229–246.

    Article  PubMed  Google Scholar 

  • Botvinick, M. (2007). Conflict monitoring and decision making: reconciling two perspectives on anterior cingulated function. Cognitive Affective & Behavioral Neuroscience, 7, 356–366.

    Article  Google Scholar 

  • Botvinick, M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.

    Article  PubMed  Google Scholar 

  • Botvinick, M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8, 539–546.

    Article  PubMed  Google Scholar 

  • Bower, G. H. (1981). Mood and memory. American Psychologist, 36, 129.

    Article  PubMed  Google Scholar 

  • Braem, S., Verguts, T., Roggeman, C., & Notebaert, W. (2012). Reward modulates adaptation to conflict. Cognition, 125, 324–332.

    Article  PubMed  Google Scholar 

  • Coan, J. A., & Allen, J. J. B. (Eds.). (2007). The handbook of emotion elicitation and assessment. New York: Oxford University Press.

    Google Scholar 

  • Dreisbach, G., & Fischer, R. (2012a). The role of affect and reward in the conflict-triggered adjustment of cognitive control. Frontiers in Human Neuroscience, 6, 342. doi:10.3389/fnhum.2012.00342.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dreisbach, G., & Fischer, R. (2012b). Conflicts as aversive signals. Brain and Cognition, 72, 94–98.

    Article  Google Scholar 

  • Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380–390.

    Article  Google Scholar 

  • Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784–1790.

    Article  PubMed  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143–149.

    Article  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  Google Scholar 

  • Fiedler, K. (2001). Affective states trigger processes of assimilation and accommodation. In L. L. Martin & G. S. Clore (Eds.), Theories of mood and cognition: a user’s guidebook (pp. 85–98). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Forgas, J. P. (Ed.). (2000). Feeling and thinking: the role of affect in social cognition. New York: Cambridge University Press.

    Google Scholar 

  • Gray, J. R. (2001). Emotional modulation of cognitive control: approach-withdrawal states double-dissociate spatial from verbal two-back task performance. Journal of Experiment Psychology: General, 130, 436–452.

    Article  Google Scholar 

  • Gray, J. R. (2004). Integration of emotion and cognitive control. Current Directions in Psychological Science, 13, 46–48.

    Article  Google Scholar 

  • Hengstler, M., Holland, R. W., van Steenbergen, H., & van Knippenberg, A. (2014). The influence of approach-avoidance motivational orientation on conflict adaptation. Cognitive, Affective, & Behavioral Neuroscience,. doi:10.3758/s13415-014-0295-6. (online first).

    Google Scholar 

  • Hewig, J., Hagemann, D., Seifert, J., Gollwitzer, M., Naumann, E., & Bartussek, D. (2005). A revised film set for the induction of basic emotions. Cognition and Emotion, 19, 1095–1109.

    Article  Google Scholar 

  • Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136, 189–202.

    Article  PubMed  Google Scholar 

  • Hommel, B., Proctor, R. W., & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 1–17.

    Article  PubMed  Google Scholar 

  • Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117, 759–784.

    Article  PubMed  Google Scholar 

  • Izard, C. E. (2007). Basic emotions, natural kinds, emotion schemas, and a new paradigm. Perspectives on Psychological Science, 2, 260–280.

    Article  PubMed  Google Scholar 

  • Kanske, P. (2012). On the influence of emotion on conflict processing. Frontiers in Integrative Neuroscience, 6, 42. doi:10.3389/fnint.2012.00042.

    Article  PubMed Central  PubMed  Google Scholar 

  • Krohne, H. W., Egloff, B., Kohlmann, C. W., & Tausch, A. (1996). Untersuchungen mit einer deutschen Form der Positive and Negative Affect Schedule (PANAS). Diagnostica, 42, 139–156.

    Google Scholar 

  • Kuhbandner, C., & Zehetleitner, M. (2011). Dissociable effects of valence and arousal in adaptive executive control. PLoS One, 6, 12. doi:10.1371/journal.pone.0029287.

    Article  Google Scholar 

  • Laux, L., Glanzmann, P., Schaffner, P., & Spielberger, C.D. (1981). Das State-Trait-Angstinventar: Theoretische Grundlagen und Handanweisungen. (The State-Trait-Anxiety Inventory: Theoretical and Practical Issues) Weinheim: Beltz Test GmbH.

  • LeDoux, J. E. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.

    Article  PubMed Central  PubMed  Google Scholar 

  • Matt, G. E., Vazquez, C., & Campbell, W. K. (1992). Mood-congruent recall of affectively toned stimuli: a meta-analytic review. Clinical Psychology Review, 12, 227–255.

    Article  Google Scholar 

  • Mayr, U., & Awh, E. (2009). The elusive link between conflict and conflict adaptation. Psychological Research, 73, 794–802.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450–452.

    PubMed  Google Scholar 

  • Melcher, T., Obst, K., Mann, A., Paulus, C., & Gruber, O. (2012). Antagonistic modulatory influences of negative affect on cognitive control: reduced and enhanced interference resolution capability after the induction of fear and sadness. Acta Psychologica, 139, 507–514.

    Article  PubMed  Google Scholar 

  • Mitchell, R. L. C., & Phillips, L. H. (2007). The psychological, neurochemical and functional neuroanatomical mediators of the effects of positive and negative mood on executive functions. Neuropsychologia, 45, 617–629.

    Article  PubMed  Google Scholar 

  • Padmala, S., Bauer, A., & Pessoa, L. (2011). Negative emotion impairs conflict-driven executive control. Frontiers in Psychology, 2, 192. doi:10.3389/fpsyg.2011.00192.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13, 160–166.

    Article  PubMed Central  PubMed  Google Scholar 

  • Plessow, F., Fischer, R., Kirschbaum, C., & Goschke, T. (2011). Inflexibly focused under stress: acute psychosocial stress increased shielding of action goals at the expense of reduced cognitive flexibility with increasing time-lag to the stressor. Journal of Cognitive Neuroscience, 23, 3218–3227.

    Article  PubMed  Google Scholar 

  • Rottenberg, J., Ray, R. R., & Gross, J. J. (2007). Emotion elicitation using films. In J. A. Coan & J. J. B. Allen (Eds.), The handbook of emotion elicitation and assessment (pp. 9–28). New York: Oxford University Press.

    Google Scholar 

  • Schuch, S., Werheid, K., & Koch, I. (2012). Flexible and inflexible tasks: asymmetric interference when switching between emotional expression, sex, and age classification of perceived faces. The Quarterly Journal of Experimental Psychology, 65, 994–1005.

    Article  PubMed  Google Scholar 

  • Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto: Consulting Psychologists Press.

    Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

  • Stürmer, B., Nigbur, R., Schacht, A., & Sommer, W. (2011). Reward and punishment effects on error processing and conflict control. Frontiers in Psychology, 2, 335. doi:10.3389/fpsyg.2011.00335.

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Steenbergen, H. (2014). Affective modulation of cognitive control: a biobehavioral perspective. In G. Gendolla, M. Tops, S. Koole (Eds.), Biobehavioral Foundations of Self-Regulation. Heidelberg: Springer.

  • Van Steenbergen, H., Band, G. P. H., & Hommel, B. (2009). Reward counteracts conflict adaptation. Psychological Science, 20, 1473–1477.

    Article  PubMed  Google Scholar 

  • Van Steenbergen, H., Band, G. P. H., & Hommel, B. (2010). In the mood for adaptation: how affect regulates conflict-driven control. Psychological Science, 21, 1629–1634.

    Article  PubMed  Google Scholar 

  • Van Steenbergen, H., Band, G. P. H., Hommel, B., Rombouts, S. A. R. B., & Nieuwenhuis, S. (2014). Hedonic hotspots regulate cingulate-driven adaptation to cognitive demands. Cerebral Cortex,. doi:10.1093/cercor/bht416. (online first).

    PubMed  Google Scholar 

  • Van Steenbergen, H., Booij, L., Band, G. P. H., Hommel, B., & van der Does, A. J. W. (2012). Affective regulation of conflict-driven control in remitted depressive patients after acute tryptophan depletion. Cognitive, Affective, & Behavioral Neuroscience, 12, 280–286.

    Article  Google Scholar 

  • Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of Positive and Negative Affect: the PANAS Scales. Journal of Personality and Social Psychology, 54, 1063–1070.

    Article  PubMed  Google Scholar 

  • Westermann, R., Spies, K., Stahl, G., & Hesse, F. W. (1996). Relative effectiveness and validity of mood induction procedures: a meta-analysis. European Journal of Social Psychology, 26, 557–580.

    Article  Google Scholar 

  • Yiend, J. (2010). The effects of emotion on attention: a review of attentional processing of emotional information. Cognition and Emotion, 24, 3–47.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Manuela Valencia Piedrahita for help with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Schuch.

Appendix

Appendix

See Tables 2 and 3.

Table 2 Film clips presented for mood induction in Experiment 1 and 2
Table 3 Questions about the film clips presented to the participants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuch, S., Koch, I. Mood states influence cognitive control: the case of conflict adaptation. Psychological Research 79, 759–772 (2015). https://doi.org/10.1007/s00426-014-0602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0602-4

Keywords

Navigation