Skip to main content
Log in

Identification and functional characterization of a new flavonoid synthase gene MdFLS1 from apple

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The flavonoid synthase gene MdFLS1 from apple, which possibly plays an important role in anthocyanin synthesis, accumulates in the purple-red branches of Malus ‘Pink spire’.

Abstract

Flavonoid metabolism serves an important function in plant growth and development. In this study, we selected 20 varieties of apple lines, 10 green and ten red branches, from the plant nursery of Qingdao Agriculture Academy. Metabolite analysis revealed that large amounts of anthocyanins accumulated in the purple-red branches of M. ‘Pink spire’. Real-time polymerase chain reaction showed that the expression of the flavonol synthase gene MdFLS1 was over 1500-fold higher in M. ‘Pink spire’ than in the other varieties. A single base A was inserted at the first three bases of the active binding site of MdFLS1 to prove that the purple-red colour of apple leaves and stems in M. ‘Pink spire’ may be caused by the inactivation of MdFLS1 protein. The results of in vitro enzymatic reaction revealed that the MdFLS1 protein lost its activity. MdFLS1 was expressed in Arabidopsis thaliana to explore further its functions. High-expression wild-type strains (OE1 and OE2) and high-expression strains of A-base insertion (A-OE1 and A-OE2) were obtained. Compared with the wild-type strains, the overexpression lines showed lighter tissue colour and less accumulation of anthocyanins. However, A-OE1 and A-OE2 showed no difference in colouration. In conclusion, we speculated that the MdFLS1 gene in M. ‘Pink spire’ cannot bind flavonoids, triggering the synthesis of anthocyanins in another branch of the flavonoid metabolic pathway and resulting in the purple-red colouration of apple leaves and stems. These results suggest that MdLS1 is a potential genetic target for breeding high-flavonoid apples in future cultivar development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CHS:

Chalcone synthase

DFR:

Dihydroflavonol-4-reductase

DHQ:

Dihydroquercetin

FLS:

Flavonol synthase

F3H:

Flavanone 3-hydroxylase

PAL:

Phenylalanine ammonia lyase

References

  • Alexandre EMC, Araújo P, Duarte MF, de Freitas V, Pintado M, Saraiva JA (2017) High-pressure assisted extraction of bioactive compounds from industrial fermented fig by-product. J Food Sci Technol 54(8):2519–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranowska I, Bajkacz S (2018) A new UHPLC-MS/MS method for the determination of flavonoids in supplements and DPPH-UHPLC-UV method for the evaluation of the radical scavenging activity of flavonoids. Food Chem 256:333–341

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan NH, Selvaraj G, Wei YD, King J (2009) Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J Exp Bot 60(2):509–521

    Article  CAS  PubMed  Google Scholar 

  • Cassidy A, Minihane AM (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105(1):10–22

    Article  CAS  PubMed  Google Scholar 

  • Chen WK, Bai XJ, Cao MM, Cheng G, Cao XJ, Guo RR, Wang Y, He L, Yang XH, He F, Duan CQ, Wang J (2017) Dissecting the variations of ripening progression and flavonoid metabolism in grape berries grown under double cropping system. Front Plant Sci 8:1912

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang H, Li X, Ma K, Zhan Y, Zeng F (2019) Molecular cloning and functional analysis of 4-Coumarate: CoA ligase 4 (4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biol 19(1):231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17(8):1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constabel CP (2018) Molecular controls of proanthocyanidin synthesis and structure: prospects for genetic engineering in crop plants. J Agric Food Chem 66(38):9882–9888

    Article  CAS  PubMed  Google Scholar 

  • Dong T, Han R, Yu J, Zhu M, Zhang Y, Gong Y, Li Z (2019) Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chem 271:18–28

    Article  CAS  PubMed  Google Scholar 

  • Dudley S, Sun C, McGinnis M, Trumble J, Gan J (2019) Formation of biologically active benzodiazepine metabolites in Arabidopsis thaliana cell cultures and vegetable plants under hydroponic conditions. Sci Total Environ 662:622–630

    Article  CAS  PubMed  Google Scholar 

  • Falcone Ferreyra ML, Casas MI, Questa JI, Herrera AL, Deblasio S, Wang J, Jackson D, Grotewold E, Casati P (2012) Evolution and expression of tandem duplicated maize flavonol synthase genes. Front Plant Sci 3:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujiwara Y, Kono M, Ito A, Ito M (2018) Anthocyanins in Perilla plants and dried leaves. Phytochemistry 147:158–166

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Liu J, Chen Y, Tang H, Wang Y, He Y, Ou Y, Sun X, Wang S, Yao Y (2018) Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. Hortic Res 5:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haggard S, Luna-Vital D, West L, Juvik JA, Chatham L, Paulsmeyer M, Gonzalez de Mejia E (2018) Comparison of chemical, color stability, and phenolic composition from pericarp of nine colored corn unique varieties in a beverage model. Food Res Int 105:286–297

    Article  CAS  PubMed  Google Scholar 

  • Holton TA, Brugliera F, Tanaka Y (1993) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J 4(6):1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Ibdah M, Martens S, Gang DR (2018) Biosynthetic pathway and metabolic engineering of plant dihydrochalcones. J Agric Food Chem 66(10):2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Irmisch S, Ruebsam H, Jancsik S, Man Saint Yuen M, Madilao LL, Bohlmann J (2019) Flavonol biosynthesis genes and their use in engineering the plant antidiabetic metabolite montbretin A. Plant Physiol 180(3):1277–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Zhu S, Yuan Y, Wang Y, Zeng L, Batley J, Wang YP (2019) Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. BMC Plant Biol 19(1):203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamiyama S, Ohnuki R, Moriki A, Abe M, Ishiguro M, Sone H (2016) The effects of light and temperature on biotin synthesis in pea sprouts. J Nutr Sci Vitaminol (Tokyo) 62(1):19–25

    Article  CAS  Google Scholar 

  • Li P, Lei K, Li YJ, He XR, Wang S, Liu RM et al (2019) Identification and characterization of the first cytokinin glycosyltransferase from rice. Rice 12(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Gregan S, Winefield C, Jordan B (2015) From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ 38(5):905–919

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li S, Yang W, Mu B, Jiao Y, Zhou X, Zhang C, Fan Y, Chen R (2018) Synthesis of seed-specific bidirectional promoters for metabolic engineering of anthocyanin-rich maize. Plant Cell Physiol 59(10):1942–1955

    Article  CAS  PubMed  Google Scholar 

  • Mahajan M, Joshi R, Gulati A, Yadav SK (2012) Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco. Plant Biol (Stuttg) 14(5):725–733

    Article  CAS  Google Scholar 

  • Mao K, Dong Q, Li C, Liu C, Ma F (2017) Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Front Plant Sci 8:480

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitsuma S, Ishigaki E, Sugiyama R, Asamizu T, Yamada K, Kurosaki F (2004) Activation of phenylpropanoid metabolism in sesame by over-expression of carrot calmodulin gene. Biol Pharm Bull 27(10):1621–1625

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NH, Kim JH, Kwon J, Jeong CY, Lee W, Lee D, Hong SW, Lee H (2016) Characterization of Arabidopsis thaliana FLAVONOL SYNTHASE 1 (FLS1)-overexpression plants in response to abiotic stress. Plant Physiol Biochem 103:133–142

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim DH, Park BR, Lee JY, Lim SH (2019) Molecular and functional characterization of Oryza sativa flavonol synthase (OsFLS), a bifunctional dioxygenase. J Agric Food Chem 67(26):7399–7409

    Article  CAS  PubMed  Google Scholar 

  • Preuss A, Stracke R, Weisshaar B, Hillebrecht A, Matern U, Martens S (2009) Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS Lett 583(12):1981–1986

    Article  CAS  PubMed  Google Scholar 

  • Sultana S, Asif HM (2017) Review: medicinal plants combating against hypertension: a green antihypertensive approach. Pak J Pharm Sci 30(6):2311–2319

    CAS  PubMed  Google Scholar 

  • Tawani A, Mishra SK, Kumar A (2017) Structural insight for the recognition of G-quadruplex structure at human c-myc promoter sequence by flavonoid quercetin. Sci Rep 7(1):3600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velagapudi R, El-Bakoush A, Olajide OA (2018) Activation of Nrf2 pathway contributes to neuroprotection by the dietary flavonoid tiliroside. Mol Neurobiol 55(10):8103–8123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco R, Zharkikh R, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK et al (2010) The genome of the domesticated apple (Malus × domestica Borkh). Nat Genet 42(10):833–839

    Article  CAS  PubMed  Google Scholar 

  • Verweij W, Spelt CE, Bliek M, de Vries M, Wit N, Faraco M, Koes R, Quattrocchio FM (2016) Functionally similar WRKY proteins regulate vacuolar acidification in Petunia and hair development in Arabidopsis. Plant Cell 28(3):786–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Alseekh S, Fernie AR, Luo J (2019) The structure and function of major plant metabolite modifications. Mol Plant 12(7):899–919

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Tan H, Ma Z, Huang J (2016) DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana. Mol Plant 9(5):711–721

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Li LI, Zhang WW, Cheng H, Sun NN, Cheng SY, Wang Y (2012) Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol Biol Rep 39(3):2285–2296

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Gao M, Huang L, Wang Y, van Nocker S, Wan R, Guo C, Wang X, Gao H (2017) Identification and expression analysis of the apple (Malus × domestica) basic helix-loop-helix transcription factor family. Sci Rep 7(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang HR, Du C, Wang Y, Wang J, Zheng LL, Wang YC (2016) The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant. Plant Physiol Biochem 106:278–287

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Kan X, Huss SE, Jiang L, Chen LQ, Hu Y (2018) Using phylogenetic analysis to investigate eukaryotic gene origin. J Vis Exp 138:56684

    Google Scholar 

  • Zhao L, Feng C, Wu K, Chen W, Chen Y, Hao X, Wu Y (2017) Advances and prospects in biogenic substances against plant virus: a review. Pestic Biochem Physiol 135:15–26

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Wu H, Zhu H, Huang C, Liu C, Chang Y, Kong Z, Zhou Z, Wang G, Lin Y, Chen H (2019a) Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves. New Phytol 223(2):705–721

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Tan W, Yang H, Zhang L, Li T, Liu B, Zhang D, Lin H (2019b) Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression. PLoS Genet 15(3):e1007993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Natural Science Foundation of China (Grant No. 32001982, 31701827, 31772254, 31972357), the Shandong Provincial Natural Science Foundation of China (Grant No. ZR2019PC041, ZR2017CM009) and the China Postdoctoral Science Foundation (Grant No. 2020M671984). Supported by the Open Project Program (2020KF09) of State Key Laboratory of Crop Biology, SDAU, Tianan, Shandong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shizhong Zhang or Lusha Ji.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 503 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Lei, K., Liu, L. et al. Identification and functional characterization of a new flavonoid synthase gene MdFLS1 from apple. Planta 253, 105 (2021). https://doi.org/10.1007/s00425-021-03615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03615-2

Keywords

Navigation