Skip to main content
Log in

Spring bud growth depends on sugar delivery by xylem and water recirculation by phloem Münch flow in Juglans regia

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

During spring, bud growth relies on long-distance transport of remotely stored carbohydrates. A new hypothesis suggests this transport is achieved by the interplay of xylem and phloem.

During the spring, carbohydrate demand of developing buds often exceeds locally available storage, thus requiring the translocation of sugars from distant locations like limbs, stems and roots. Both the phloem and xylem have the capacity for such long-distance transport, but their functional contribution is unclear. To address this ambiguity, the spatial and temporal dynamics of carbohydrate availability in extension shoots of Juglans regia L. were analyzed. A significant loss of extension shoot carbohydrates in remote locations was observed while carbohydrate availability near the buds remained unaffected. This pattern of depletion of carbohydrate reserves supports the notion of long-distance translocation. Girdling and dye perfusion experiments were performed to assess the role of phloem and xylem in the transport of carbohydrate and water towards the buds. Girdling caused a decrease in non-structural carbohydrate concentration above the point of girdling and an unexpected concurrent increase in water content associated with impeded xylem transport. Based on experimental observations and modeling, we propose a novel mechanism for maintenance of spring carbohydrate translocation in trees where xylem transports carbohydrates and this transport is maintained with the recirculation of water by phloem Münch flow. Phloem Münch flow acts as a pump for generating water flux in xylem and allows for transport and mobilization of sugars from distal locations prior to leaves photosynthetic independence and in the absence of transpiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alves G, Decourteix M, Fleurat-Lessard P, Sakr S, Bonhomme M, Améglio T, Lacointe A, Julien JL, Petel G, Guilliot A (2007) Spatial activity and expression of plasma membrane H+-ATPase in stem xylem of walnut during dormancy and growth resumption. Tree Physiol 27:1471–1480. doi:10.1093/treephys/27.10.1471

    Article  CAS  PubMed  Google Scholar 

  • Améglio T, Bodet C, Lacointe A, Cochard H (2002) Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiol 22:1211–1220

    Article  PubMed  Google Scholar 

  • Améglio T, Guilliot A, Lacointe A, Julien JL, Alves G, Valentin V, Pétel G (2000) Water relations in winter: effect on bud break of walnut tree, In: Dormancy in plants: from whole plant behaviour to cellular control, pp 109–120. doi:10.1079/9780851994475.0109

  • Basri E, Yuniarti K, Wahyudi I, Saefudin Damayanti R (2015) Effects of girdling on wood properties and drying characteristics of Acacia mangium. J Trop For Sci 27:498–505

    Google Scholar 

  • Bazot S, Barthes L, Blanot D, Fresneau C (2013) Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages. Trees Struct Funct 27:1023–1034. doi:10.1007/s00468-013-0853-5

    Article  CAS  Google Scholar 

  • Bonhomme M, Rageau R, Lacointe A, Gendraud M (2005) Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia and nearby structures of peach buds (Prunus persica L. Batch). Sci Hortic 105:223–240. doi:10.1016/j.scienta.2005.01.015

    Article  CAS  Google Scholar 

  • Bonhomme M, Peuch M, Améglio T, Rageau R, Guilliot A, Decourteix M, Alves G, Sakr S, Lacointe A (2010) Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol 30:89–102. doi:10.1093/treephys/tpp103

    Article  CAS  PubMed  Google Scholar 

  • Charrier G, Ngao J, Saudreau M, Améglio T (2015) Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. Front Plant Sci 6:1–18. doi:10.3389/fpls.2015.00259

    Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365. doi:10.1016/j.tree.2007.04.003

    Article  PubMed  Google Scholar 

  • De Schepper V, Steppe K (2011) Tree girdling responses simulated by a water and carbon transport model. Ann Bot 108:1147–1154. doi:10.1093/aob/mcr068

    Article  PubMed  PubMed Central  Google Scholar 

  • Decourteix M, Alves G, Bonhomme M, Peuch M, Ben Baaziz K, Brunel N, Guilliot A, Rageau R, Améglio T, Pétel G, Sakr S (2008) Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol 28:215–224. doi:10.1093/treephys/28.2.215

    Article  CAS  PubMed  Google Scholar 

  • Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014) Nonstructural carbon in woody plants. Annu Rev Plant Biol 65:667–687. doi:10.1146/annurev-arplant-050213-040054

    Article  CAS  PubMed  Google Scholar 

  • Esparza G, DeJong TM, Weinbaum SA (2001) Effects of irrigation deprivation during the harvest period on nonstructural carbohydrate and nitrogen contents of dormant, mature almond trees. Tree Physiol 21:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Ewers FW, Améglio T, Cochard H, Beaujard F, Martignac M, Vandame M, Bodet C, Cruiziat P (2001) Seasonal variation in xylem pressure of walnut trees: root and stem pressures. Tree Physiol 21:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Fisher DB (1983) Year-round collection of willow sieve-tube exudate. Planta 159:529–533. doi:10.1007/BF00409142

    Article  CAS  PubMed  Google Scholar 

  • Fulton A, Grant J, Buchner R, Connell J (2014) Using the pressure chamber for irrigation management in walnut, almond, and prune. Oakland: University of California Division of Agriculture and Natural Resources Publication 8503. UC ANR Communication Services website, http://anrcatalog.ucdavis.edu/Details.aspx?itemNo=8503

  • Hartmann H, Trumbore S (2016) Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. New Phytol 211:386–403. doi:10.1111/nph.13955

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Sakamoto D, Moriguchi T (2012) Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Sci Hortic 144:187–194. doi:10.1016/j.scienta.2012.07.009

    Article  CAS  Google Scholar 

  • Jensen KH, Berg-Sorensen K, Bruus H, Holbrook NM, Liesche J, Schulz A, Zwieniecki MA, Bohr T (2016) Sap flow and sugar transport in plants. Rev Mod Phys. doi:10.1103/RevModPhys.88.035007

    Google Scholar 

  • Jolly WM, Nemani R, Running SW (2005) A generalized, bioclimatic index to predict foliar phenology in response to climate. Glob Chang Biol 11:619–632. doi:10.1111/j.1365-2486.2005.00930.x

    Article  Google Scholar 

  • Körner C, Basler D, Koerner C, Basler D, Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462. doi:10.1126/science.1186473

    Article  PubMed  Google Scholar 

  • Lacointe A, Minchin PEH (2008) Modeling phloem and xylem transport within a complex architecture. Funct Plant Biol 35:772–780

    Article  Google Scholar 

  • Lacointe A, Deleens E, Améglio T, Saint-Joanis B, Lelarge C, Vandame M, Song GC, Daudet FA (2004) Testing the branch autonomy theory: a 13C/14C double-labelling experiment on differentially shaded branches. Plant Cell Environ 27:1159–1168. doi:10.1111/j.1365-3040.2004.01221.x

    Article  CAS  Google Scholar 

  • Laurila J, Lauhanen R, Hakonen T (2014) The effect of girdling on the moisture content of small-sized trees. Scand J For Res 29:1–7. doi:10.1080/02827581.2014.896937

    Article  Google Scholar 

  • Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Theevenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272. doi:10.3389/fpls.2013.00272

    Article  PubMed  PubMed Central  Google Scholar 

  • Leyva A, Quintana A, Sánchez M, Rodríguez EN, Cremata J, Sánchez JC (2008) Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: method development and validation. Biologicals 36:134–141. doi:10.1016/j.biologicals.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  • Loescher WH, Mccamant T, Keller JD (1990) Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience 25:274–281

    CAS  Google Scholar 

  • Marafon AC, Citadin I, Amarante L, Herter FG, Hawerroth FJ (2011) Chilling privation during dormancy period and carbohydrate mobilization in Japanese pear trees. Sci Agric 68:462–468. doi:10.1590/S0103-90162011000400011

    Article  CAS  Google Scholar 

  • Maurel K, Leite GB, Bonhomme M, Guilliot A, Rageau R, Pétel G, Sakr S (2004) Trophic control of bud break in peach (Prunus persica) trees: a possible role of hexoses. Tree Physiol 24:579–588. doi:10.1093/treephys/24.5.579

    Article  CAS  PubMed  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Migliavacca M, Sonnentag O, Keenan TF, Cescatti A, O’Keefe J, Richardson AD (2012) On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences 9:2063–2083. doi:10.5194/bg-9-2063-2012

    Article  Google Scholar 

  • Muhr J, Messier C, Delagrange S, Trumbore S, Xu X, Hartmann H (2016) How fresh is maple syrup? Sugar maple trees mobilize carbon stored several years previously during early springtime sap-ascent. New Phytol 209:1410–1416. doi:10.1111/nph.13782

    Article  CAS  PubMed  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Verlag von Gustav Fischer, Jena, p 234

    Google Scholar 

  • Münch E (1943) Durchlassigkeit der siebrohren fur druckstro mungen. Flora 136:223–262

    Google Scholar 

  • Pate JS, Atkins CA (1983) Xylem and phloem transport and the functional economy of carbon and nitrogen of a Legume Leaf. Plant Physiol 71:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York, p 528p

    Book  Google Scholar 

  • Pope KS, Dose V, Da Silva D, Brown PH, DeJong TM (2014) Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds. Int J Biometeorol. doi:10.1007/s00484-014-0881-x

    PubMed  Google Scholar 

  • Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu X (2013) Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol 197:850–861. doi:10.1111/nph.12042

    Article  CAS  PubMed  Google Scholar 

  • Rinne P, Tuominen H, Junttila O (1994) Seasonal changes in bud dormancy in relation to bud morphology, water and starch content, and abscisic acid concentration in adult trees of Betula pubescens. Tree Physiol 14:549–561. doi:10.1093/treephys/14.6.549

    Article  CAS  PubMed  Google Scholar 

  • Rubio S, Donoso A, Pérez FJ (2014) The dormancy-breaking stimuli “chilling, hypoxia and cyanamide exposure” up-regulate the expression of α-amylase genes in grapevine buds. J Plant Physiol 171:373–381. doi:10.1016/j.jplph.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. [WWW Document]. R Found. Stat. Comput. Vienna. ISBN: 3-900051-07-0. http://www.r-project.org/.le

  • Schneider C, Rasband WS, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simões F, Hawerroth FJ, Yamamoto RR, Herter FG (2014) Water content and carbohydrate dynamics of pear trees during dormancy in southern Brazil. Acta Hort 1058:305–312

    Article  Google Scholar 

  • Sperry JS, Holbrook NM, Zimmermann MH, Tyree MT (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol 83:414–417. doi:10.1104/pp.83.2.414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spicer R (2014) Symplasmic networks in secondary vascular tissues: Parenchyma distribution and activity supporting long-distance transport. J Exp Bot 65:1829–1848. doi:10.1093/jxb/ert459

    Article  CAS  PubMed  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Taylor A, Cooper P (2002) Effect of stem girdling on wood quality. Wood Fiber Sci 34:212–220

    CAS  Google Scholar 

  • Turgeon R (2010) The role of phloem loading reconsidered. Plant Physiol 152:1817–1823. doi:10.1104/pp.110.153023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 5th edn. Springer, New-York

    Book  Google Scholar 

  • Vitasse Y, Basler D, Way D (2014) Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments? Tree Physiol 34:174–183. doi:10.1093/treephys/tpt116

    Article  PubMed  Google Scholar 

  • Wegner LH (2014) Root pressure and beyond: energetically uphill water transport into xylem vessels. J Exp Bot 65:381–393. doi:10.1093/jxb/ert391

    Article  CAS  PubMed  Google Scholar 

  • Westhoff M, Schneider H, Zimmermann D, Mimietz S, Stinzing A, Wegner LH, Kaiser W, Krohne G, Shirley S, Jakob P, Bamberg E, Bentrup FW, Zimmermann U (2008) The mechanisms of refilling of xylem conduits and bleeding of tall birch during spring. Plant Biol 10:604–623. doi:10.1111/j.1438-8677.2008.00062.x

    Article  CAS  PubMed  Google Scholar 

  • Witt W, Sauter JJ (1994) Starch metabolism in poplar wood ray cells during spring mobilization and summer deposition. Physiol Plant 92:9–16. doi:10.1034/j.1399-3054.1994.920102.x

    Article  CAS  Google Scholar 

  • Wong BL, Baggett KL, Rye AH (2003) Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum). Can J Bot 788:780–788. doi:10.1139/B03-079

    Article  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Feild TS, Holbrook NM (2004) A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance. Tree Physiol 24:911–917

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Theodore DeJong for comments on the manuscript. We thank Emilio Lacas and Guillaume Theroux for advice on statistical analysis. The work presented here was supported by the California Pistachio Research Board, the Almond Board of California, and the California Walnut Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aude Tixier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tixier, A., Sperling, O., Orozco, J. et al. Spring bud growth depends on sugar delivery by xylem and water recirculation by phloem Münch flow in Juglans regia . Planta 246, 495–508 (2017). https://doi.org/10.1007/s00425-017-2707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2707-7

Keywords

Navigation