Skip to main content

Advertisement

Log in

Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Multiple eukaryotic Hsp70 typically localized in the cytoplasm are also distributed to the intermembrane space of chloroplasts and might thereby represent the missing link in energizing protein translocation.

Protein translocation into organelles is a central cellular process that is tightly regulated. It depends on signals within the preprotein and on molecular machines catalyzing the process. Molecular chaperones participate in transport and translocation of preproteins into organelles to control folding and to provide energy for the individual steps. While most of the processes are explored and the components are identified, the transfer of preproteins into and across the intermembrane space of chloroplasts is not yet understood. The existence of an energy source in this compartment is discussed, because the required transit peptide length for successful translocation into chloroplasts is shorter than that found for mitochondria where energy is provided exclusively by matrix chaperones. Furthermore, a cytosolic-type Hsp70 homologue was proposed as component of the chloroplast translocon in the intermembrane space energizing the initial translocation. The molecular identity of such intermembrane space localized Hsp70 remained unknown, which led to a controversy concerning its existence. We identified multiple cytosolic Hsp70s by mass spectrometry on isolated, thermolysin-treated Medicago sativa chloroplasts. The localization of these Hsp70s of M. sativa or Arabidopsis thaliana in the intermembrane space was confirmed by a self-assembly GFP-based in vivo system. The localization of cytosolic Hsp70s in the stroma of chloroplasts or different mitochondrial compartments could not be observed. Similarly, we could not identify any cytosolic Hsp90 in the intermembrane space of chloroplast. With respect to our results we discuss the possible targeting and function of the Hsp70 found in the intermembrane space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HSP:

Heat shock protein

IMS:

Intermembrane space

Mgd1:

Monogalactosyldiacylglycerol synthase 1

Oep21/37:

Outer envelope protein of 21/37 kDa

pSSU:

Precursor of the small subunit of RUBISCO

SP1:

Plastidic type I signal peptidase 1

TIC:

Translocon of the inner chloroplast membrane

TIM:

Translocon of the inner mitochondrial membane

TOC:

Translocon of the outer chloroplast membrane

References

  • Armbruster U, Hertle A, Makarenko E et al (2009) Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome? Mol Plant 2:1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H, Boij P, Patel R, Wardle A, Töpel M, Jarvis P (2007) Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis thaliana. Plant J 52:53–68

    Article  PubMed  CAS  Google Scholar 

  • Bae W, Lee YJ, Kim DH, Lee J, Kim S, Sohn EJ, Hwang I (2008) AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nat Cell Biol 10:220–227

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Hritz J, Vogel M, Caliebe A, Bukau B, Soll J, Schleiff E (2004) Toc12, a novel subunit of the intermembrane space preprotein translocon of chloroplasts. Mol Biol Cell 15:5130–5144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Benning C, Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280:2397–2400

    Article  PubMed  CAS  Google Scholar 

  • Bionda T, Schleiff E (2010) Chloroplast isolation and in vitro protein import. J Endocytobiosis Cell Res 20:16–25

    Google Scholar 

  • Bionda T, Tillmann B, Simm S, Beilstein K, Ruprecht M, Schleiff E (2010) Chloroplast import signals: the length requirement for translocation in vitro and in vivo. J Mol Biol 402:510–523

    Article  PubMed  CAS  Google Scholar 

  • Bräutigam A, Shrestha RP, Whitten D, Wilkerson CG, Carr KM, Froehlich JE, Weber AP (2008) Comparison of the use of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. J Biotechnol 136:44–53

    Article  PubMed  CAS  Google Scholar 

  • Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 285:6848–6856

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107

    Article  PubMed  CAS  Google Scholar 

  • Carrie C, Giraud E, Whelan J (2009) Protein transport in organelles: dual targeting of proteins to mitochondria and chloroplasts. FEBS J 276:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Chiu CC, Chen LJ, Li HM (2010) Pea chloroplast DnaJ-J8 and Toc12 are encoded by the same gene and localized in the stroma. Plant Physiol 154:1172–1182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chu CC, Li HM (2012) The amino-terminal domain of chloroplast Hsp93 is important for its membrane association and functions in vivo. Plant Physiol 158:1656–1665

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Elkehal R, Becker T, Sommer MS, Königer M, Schleiff E (2012) Specific lipids influence the import capacity of the chloroplast outer envelope precursor protein translocon. Biochim Biophys Acta 1823:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Gross LE, Machettira AB, Rudolf M, Schleiff E, Sommer MS (2011) GFP-based in vivo protein topology determination in plant protoplasts. J Endocytobiosis Cell Res 21:89–97

    Google Scholar 

  • Guéra A, America T, van Waas M, Weisbeek PJ (1993) A strong protein unfolding activity is associated with the binding of precursor chloroplast proteins to chloroplast envelopes. Plant Mol Biol 23:309–324

    Article  PubMed  Google Scholar 

  • Inoue K, Baldwin AJ, Shipman RL, Matsui K, Theg SM, Ohme-Takagi M (2005) Complete maturation of the plastid protein translocation channel requires a type I signal peptidase. J Cell Biol 171:425–430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Inoue H, Li M, Schnell DJ (2013) An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proc Natl Acad Sci USA 110:3173–3178

    Article  PubMed Central  PubMed  Google Scholar 

  • Ivey RA 3rd, Subramanian C, Bruce BD (2000) Identification of a Hsp70 recognition domain within the rubisco small subunit transit peptide. Plant Physiol 122:1289–1299

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jackson-Constan D, Akita M, Keegstra K (2001) Molecular chaperones involved in chloroplast protein import. Biochim Biophys Acta 1541:102–113

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Gray JC (2009) Interaction of actin and the chloroplast protein import apparatus. J Biol Chem 284:19132–19141

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A et al (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Kourtz L (1997) The early stage of chloroplast protein import involves Com70. J Biol Chem 272:2808–2813

    Article  PubMed  Google Scholar 

  • Ko K, Bornemisza O, Kourtz L, Ko ZW, Plaxton WC, Cashmore AR (1992) Isolation and characterisation of a cDNA clone encoding a cognate 70 kDa heat shock protein of the chloroplast envelope. J Biol Chem 267:2986–2993

    PubMed  CAS  Google Scholar 

  • Kouranov A, Chen X, Fuks B, Schnell DJ (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143:991–1002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kouranov A, Wang H, Schnell DJ (1999) Tic22 is targeted to the intermembrane space of chloroplasts by a novel pathway. J Biol Chem 274:25181–25186

    Article  PubMed  CAS  Google Scholar 

  • Kovacheva S, Bédard J, Wardle A, Patel R, Jarvis P (2007) Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J 50:364–379

    Article  PubMed  CAS  Google Scholar 

  • Ladig R, Sommer MS, Hahn A et al (2011) A high-definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes. Plant J 67:181–194

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Lee DW, Lee Y, Mayer U, Stierhof YD, Lee S, Jürgens G, Hwang I (2009) Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21:3984–4001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leibovitch M, Bublak D, Hanic-Joyce PJ et al (2013) The folding capacity of the mature domain of the dual-targeted plant tRNA nucleotidyltransferase influences organelle selection. Biochem J 453:401–412

    Article  PubMed  CAS  Google Scholar 

  • Liu L, McNeilage RT, Shi LX, Theg SM (2014) ATP requirement for chloroplast protein import is set by the Km for ATP hydrolysis of stromal Hsp70 in Physcomitrella patens. Plant Cell 26:1246–1255

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Machettira AB, Gross LE, Sommer MS, Weis BL, Englich G, Tripp J, Schleiff E (2011) The localization of Tic20 proteins in Arabidopsis thaliana is not restricted to the inner envelope membrane of chloroplasts. Plant Mol Biol 77:381–390

    Article  PubMed  CAS  Google Scholar 

  • Marshall JS, DeRocher AE, Keegstra K, Vierling E (1990) Identification of heat shock protein hsp70 homologues in chloroplasts. Proc Natl Acad Sci USA 87:374–378

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–64

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mayer A, Neupert W, Lill R (1995) Translocation of apocytochrome c across the outer membrane of mitochondria. J Biol Chem 270:12390–12397

    Article  PubMed  CAS  Google Scholar 

  • Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R, Joyard J (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265:990–1001

    Article  PubMed  Google Scholar 

  • Miras S, Salvi D, Ferro M, Grunwald D, Garin J, Joyard J, Rolland N (2002) Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277:47770–47778

    Article  PubMed  CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nada A, Soll J (2004) Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J Cell Sci 117:3975–3982

    Article  PubMed  CAS  Google Scholar 

  • Nakai M (2015) The TIC complex uncovered: the alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochim Biophys Acta 1847:957–967

    Article  PubMed  CAS  Google Scholar 

  • Neumann D, Nieden U, Manteuffel R, Walter G, Scharf KD, Nover L (1987) Intracellular localization of heat shock proteins in tomato cell cultures. Eur J Cell Biol 43:71–81

    CAS  Google Scholar 

  • Olsen LJ, Keegstra K (1992) The binding of precursor proteins to chloroplasts requires nucleoside triphosphates in the intermembrane space. J Biol Chem 267:433–439

    PubMed  CAS  Google Scholar 

  • Perry SE, Keegstra K (1994) Envelope membrane proteins that interact with chloroplastic precursor proteins. Plant Cell 6:93–105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qbadou S, Becker T, Mirus O, Tews I, Soll J, Schleiff E (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J 25:1836–1847

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qbadou S, Becker T, Bionda T, Reger K, Ruprecht M, Soll J, Schleiff E (2007) Toc64-a preprotein-receptor at the outer membrane with bipartide function. J Mol Biol 367:1330–1346

    Article  PubMed  CAS  Google Scholar 

  • Ratnayake RM, Inoue H, Nonami H, Akita M (2008) Alternative processing of Arabidopsis Hsp70 precursors during protein import into chloroplasts. Biosci Biotechnol Biochem 72:2926–2935

    Article  PubMed  CAS  Google Scholar 

  • Rial DV, Arakaki AK, Ceccarelli EA (2000) Interaction of the targeting sequence of chloroplast precursors with Hsp70 molecular chaperones. Eur J Biochem 267:6239–6248

    Article  PubMed  CAS  Google Scholar 

  • Rödiger A, Baudisch B, Klösgen RB (2010) Simultaneous isolation of intact mitochondria and chloroplasts from a single pulping of plant tissue. J Plant Physiol 167:620–624

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum Hofmann N, Theg SM (2005) Toc64 is not required for import of proteins into chloroplasts in the moss Physcomitrella patens. Plant J 43:675–687

    Article  PubMed  CAS  Google Scholar 

  • Rudolf M, Machettira AB, Groß LE et al (2013) In vivo function of Tic22, a protein import component of the intermembrane space of chloroplasts. Mol Plant 6:817–829

    Article  PubMed  CAS  Google Scholar 

  • Ruprecht M, Bionda T, Sato T, Sommer MS, Endo T, Schleiff E (2010) On the impact of precursor unfolding during protein import into chloroplasts. Mol Plant 3:499–508

    Article  PubMed  CAS  Google Scholar 

  • Rutschow H, Ytterberg AJ, Friso G, Nilsson R, van Wijk KJ (2008) Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis. Plant Physiol 148:156–175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526

    Article  PubMed  CAS  Google Scholar 

  • Schleiff E, Becker T (2011) Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol 12:48–59

    Article  PubMed  CAS  Google Scholar 

  • Schleiff E, Motzkus M, Soll J (2002) Chloroplast protein import inhibition by a soluble factor from wheat germ lysate. Plant Mol Biol 50:177–185

    Article  PubMed  CAS  Google Scholar 

  • Schleiff E, Eichacker LA, Eckart K, Becker T, Mirus O, Stahl T, Soll J (2003a) Prediction of the plant beta-barrel proteome: a case study of the chloroplast outer envelope. Protein Sci 12:748–759

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schleiff E, Soll J, Küchler M, Kühlbrandt W, Harrer R (2003b) Characterization of the translocon of the outer envelope of chloroplasts. J Cell Biol 160:541–551

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmidt von Braun S, Schleiff E (2008) The chloroplast outer membrane protein CHUP1 interacts with actin and profilin. Planta 227:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Schnell DJ, Kessler F, Blobel G (1994) Isolation of components of the chloroplast protein import machinery. Science 266:1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Shi LX, Theg SM (2010) A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22:205–220

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sjögren LL, Tanabe N, Lymperopoulos P, Khan NZ, Rodermel SR, Aronsson H, Clarke AK (2014) Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance. J Biol Chem 289:11318–11330

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sommer MS, Schleiff E (2009) Molecular interactions within the plant TOC complex. Biol Chem 390:739–744

    Article  PubMed  CAS  Google Scholar 

  • Sommer MS, Daum B, Gross LE et al (2011) Chloroplast Omp85 proteins change orientation during evolution. Proc Natl Acad Sci USA 108:13841–13846

    Article  PubMed Central  PubMed  Google Scholar 

  • Sommer M, Rudolf M, Tillmann B, Tripp J, Sommer MS, Schleiff E (2013) Toc33 and Toc64-III cooperate in precursor protein import into the chloroplasts of Arabidopsis thaliana. Plant, Cell Environ 36:970–983

    Article  CAS  Google Scholar 

  • Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084–38089

    PubMed  CAS  Google Scholar 

  • Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22:1516–1531

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tillmann B, Röth S, Bublak D, Sommer M, Stelzer EH, Scharf KD, Schleiff E (2015) Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato. Mol Plant 8:228–241

    Article  PubMed  CAS  Google Scholar 

  • Tripp J, Hahn A, Koenig P et al (2012) Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria. J Biol Chem 287:24164–24173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Villarejo A, Burén S, Larsson S et al (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    Article  PubMed  CAS  Google Scholar 

  • Vojta A, Alavi M, Becker T, Hörmann F, Küchler M, Soll J, Thomson R, Schleiff E (2004) The protein translocon of the plastid envelopes. J Biol Chem 279:21401–21405

    Article  PubMed  CAS  Google Scholar 

  • Vojta L, Soll J, Bölter B (2007) Protein transport in chloroplasts—targeting tothe intermembrane space. FEBS J 274:5043–5054

    Article  PubMed  CAS  Google Scholar 

  • Waegemann K, Soll J (1991) Characterization of the protein import apparatus in isolated outer envelopes of chloroplasts. Plant J 1:149–158

    Article  Google Scholar 

  • Wickner W, Schekman R (2005) Protein translocation across biological membranes. Science 310:1452–1456

    Article  PubMed  CAS  Google Scholar 

  • Zhang XP, Glaser E (2002) Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Plant Sci 7:14–21

    Article  PubMed  CAS  Google Scholar 

  • Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3:e1994

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Cluster of Excellence Frankfurt “Macromolecular Complexes”, by the Deutsche Forschungsgemeinschaft (DFGSCHL 585-3; SFB807 P17 to ES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Schleiff.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bionda, T., Gross, L.E., Becker, T. et al. Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts. Planta 243, 733–747 (2016). https://doi.org/10.1007/s00425-015-2440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2440-z

Keywords

Navigation