Skip to main content
Log in

Molecular approaches for improving desiccation tolerance: insights from the brine shrimp Artemia franciscana

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

We have evaluated the endogenous expression and molecular properties of selected Group 3 LEA proteins from Artemia franciscana , and the capacity of selected Groups 1 and 3 proteins transfected into various desiccation-sensitive cell lines to improve tolerance to drying.

Organisms inhabiting both aquatic and terrestrial ecosystems frequently are confronted with the problem of water loss for multiple reasons—exposure to hypersalinity, evaporative water loss, and restriction of intracellular water due to freezing of extracellular fluids. Seasonal desiccation can become severe and lead to the production of tolerant propagules and entry into the state of anhydrobiosis at various stages of the life cycle. Such is the case for gastrula-stage embryos of the brine shrimp, Artemia franciscana. Physiological and biochemical responses to desiccation are central for survival and are multifaceted. This review will evaluate the impact of multiple late embryogenesis abundant proteins originating from A. franciscana, together with the non-reducing sugar trehalose, on prevention of desiccation damage at multiple levels of biological organization. Survivorship of desiccation-sensitive cells during water stress can be improved by use of the above protective agents, coupled to metabolic preconditioning and rapid cell drying. However, obtaining long-term stability of cells in the dried state at room temperature has not been accomplished and will require continued efforts on both the physicochemical and biological fronts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LEA:

Late embryogenesis abundant

ROS:

Reactive oxygen species

T g :

Glass transition temperature

GFP:

Green fluorescent protein

TFE:

Trifluoroethanol

PFK:

Phosphofructokinase

CS:

Citrate synthase

LDH:

Lactate dehydrogenase

AMPK:

AMP activated protein kinase

AICAR:

5-Amino-4-imidazole carboxamide ribonucleoside

ZMP:

5-Amino-4-imidazole carboxamide ribonucleoside monophosphate

References

  • Borcar A, Menze MA, Toner M, Hand SC (2013) Metabolic preconditioning of mammalian cells: mimetic agents for hypoxia lack fidelity in promoting phosphorylation of pyruvate dehydrogenase. Cell Tissue Res 351:99–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boswell LC, Hand SC (2014) Intracellular localization of group 3 LEA proteins in embryos of Artemia franciscana. Tissue Cell 46:514–519

    Article  CAS  PubMed  Google Scholar 

  • Boswell LC, Moore DS, Hand SC (2014a) Quantification of cellular protein expression and molecular features of group 3 LEA proteins from embryos of Artemia franciscana. Cell Stress Chaperon 19:329–341

    Article  CAS  Google Scholar 

  • Boswell LC, Menze MA, Hand SC (2014b) Group 3 LEA proteins from embryos of Artemia franciscana: Structural properties and protective abilities during desiccation. Physiol Biochem Zool 87:640–651

    CAS  PubMed  Google Scholar 

  • Boucher V, Buitink J, Lin X, Boude J, Hoekstra FA, Hundertmark M, Renard D, Leprince O (2010) MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins. Plant Cell Environ 33:418–430

    Article  CAS  PubMed  Google Scholar 

  • Browne J, Tunnacliffe A, Burnell A (2002) Anhydrobiosis: plant desiccation gene found in a nematode. Nature 416:38

    Article  CAS  PubMed  Google Scholar 

  • Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell AM (2004) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryot Cell 3:966–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D (2014) The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 26:3148–3166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carpenter JF, Crowe JH (1988) Modes of stabilization of a protein by organic solutes during desiccation. Cryobiology 25:459–470

    Article  CAS  Google Scholar 

  • Carpenter JF, Martin B, Crowe LM, Crowe JH (1987) Stabilization of phosphofructokinase during air-drying with sugars and sugar transition/metal mixtures. Cryobiology 24:455–464

    Article  CAS  PubMed  Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci USA 104:18073–18078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chakrabortee S, Tripathi R, Watson M, Schierle GSK, Kurniawan DP, Kaminski CF, Wise MJ, Tunnacliffe A (2012) Intrinsically disordered proteins as molecular shields. Mol Biosyst 8:210–219

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty N, Chang A, Elmoazzen H, Menze MA, Hand SC, Toner M (2011a) A spin-drying technique for lyopreservation of mammalian cells. Ann Biomed Eng 39:1582–1591

    Article  PubMed  Google Scholar 

  • Chakraborty N, Menze MA, Malsam J, Aksan A, Hand SC, Toner M (2011b) Biostabilization of spin-dried mammalian cells. PLoS One 6:e24916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chatelain E, Hundertmark M, Leprince O, Le Gall S, Satour P, Deligny-Penninck S, Rogniaux H, Buitink J (2012) Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant Cell Environ 35:1440–1455

    Article  CAS  PubMed  Google Scholar 

  • Chown SL, Sørensen JG, Terblanche JS (2011) Water loss in insects: an environmental change perspective. J Insect Physiol 57:1070–1084

    Article  CAS  PubMed  Google Scholar 

  • Clark MS, Thorne MA, Purac J, Grubor-Lajsic G, Kube M et al (2007) Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus) EST libraries. BMC Genom 8:475

    Article  Google Scholar 

  • Clegg JS (2011) Stress-related proteins compared in diapause and in activated, anoxic encysted embryos of the animal extremophile, Artemia franciscana. J Insect Physiol 57:660–664

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Clegg JS (1973) Anhydrobiosis. Dowden, Hutchinson and Ross, Stroudsburg

    Google Scholar 

  • Crowe JH, Clegg JS (1978) Dry biological systems. Academic Press, New York

    Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Prestrelski SJ, Hoekstra FA, de Araujo PS, Panek AD (1997) Anhydrobiosis: cellular adaptation to extreme dehydration. In: Dantzler WH (ed) Handbook of physiology, vol II. Oxford University Press, Oxford, pp 1445–1477

    Google Scholar 

  • Crowe JH, Crowe LM, Wolkers WF, Oliver AE, Ma X, Auh J-H, Tang M, Zhu S, Norris J, Tablin F (2005) Stabilization of dry mammalian cells: lessons from nature. Integr Comp Biol 45:810–820

    Article  CAS  PubMed  Google Scholar 

  • Dure L, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Erkut C, Vasilj A, Boland S, Habermann B, Shevchenko A, Kurzchalia TV (2013) Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation. PLoS One 8:e82473

    Article  PubMed Central  PubMed  Google Scholar 

  • Forster F, Liang C, Shkumatov A, Beisser D, Engelmann JC et al (2009) Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades. BMC Genom 10:469

    Article  Google Scholar 

  • Gal TZ, Glazer I, Koltai H (2004) An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577:21–26

    Article  CAS  PubMed  Google Scholar 

  • Gibbs AG, Matzkin LM (2001) Evolution of water balance in the genus Drosophila. J Exp Biol 204:2331–2338

    CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hand SC, Jones D, Menze MA, Witt TL (2007) Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. J Exp Zool A Ecol Genet Physiol 307:62–66

    Article  PubMed  Google Scholar 

  • Hand SC, Menze MA, Borcar A, Patil Y, Covi JA, Reynolds JA, Toner M (2011a) Metabolic restructuring during energy-limited states: insights from Artemia franciscana embryos and other animals. J Insect Physiol 57:584–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011b) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  • Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B Biol Sci 150:149–191

    Article  CAS  PubMed  Google Scholar 

  • Kikawada T, Nakahara Y, Kanamori Y, Iwata K, Watanabe M et al (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61

    Article  CAS  PubMed  Google Scholar 

  • Kikawada T, Saito A, Kanamori Y, Nakahara Y, Iwata K et al (2007) Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc Natl Acad Sci USA 104:11585–11590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li D, He X (2009) Desiccation induced structural alterations in a 66-amino acid fragment of an anhydrobiotic nematode late embryogenesis abundant (LEA) protein. Biomacromolecules 10:1469–1477

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand SC (2012) Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Natl Acad Sci USA 109:20859–20864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X-H, Aksan A, Menze MA, Hand SC, Toner M (2005) Trehalose loading through the mitochondrial permeability transition pore enhances desiccation tolerance in rat liver mitochondria. Biochim Biophys Acta 1717:21–26

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Jamil K, MacRae TH, Clegg JS, Russell JM, Villaneuve TS, Euloch M, Sun Y, Crowe JH, Tablin F, Oliver AE (2005) A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology 51:15–28

    Article  CAS  PubMed  Google Scholar 

  • Marunde MA, Samarajeewaa DA, Anderson J, Li S, Hand SC, Menze MA (2013) Improved tolerance to salt and water stress in Drosophila melanogaster cells conferred by late embryogenesis abundant protein. J Insect Physiol 59:377–386

    Article  CAS  PubMed  Google Scholar 

  • McCluney KE, Belnap J, Collins SL, Gonzalez AL, Hagen EM, Holland JN, Kotler BP, Maestre FT, Smith SD, Wolf BO (2012) Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol Rev 87:563–582

    Article  PubMed  Google Scholar 

  • Menze MA, Boswell L, Toner M, Hand SC (2009) Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. J Biol Chem 284:10714–10719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menze MA, Chakraborty N, Clavenna M, Banerjee M, Liu XH, Toner M, Hand SC (2010) Metabolic preconditioning of cells with AICAR-riboside: improved cryopreservation and cell-type specific impacts on energetics and proliferation. Cryobiology 61:79–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patil Y, Marden B, Brand MD, Hand SC (2013) Metabolic downregulation and inhibition of carbohydrate catabolism during diapause in embryos of Artemia franciscana. Physiol Biochem Zool 86:106–118

    Article  CAS  PubMed  Google Scholar 

  • Podrabsky JE, Hand SC (2015) Physiological strategies during animal diapause: lessons from brine shrimp and annual killifish. J Exp Biol (in press)

  • Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298:E751–E760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shih MD, Hsieh TY, Jian WT, Wu MT, Yang SJ, Hoekstra FA, Hsing YIC (2012) Functional studies of soybean (Glycine max L.) seed LEA proteins GmPM6, GmPM11, and GmPM30 by CD and FTIR spectroscopy. Plant Sci 196:152–159

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Kanamori Y, Furuki T, Kikawada T, Okuda T et al (2010) Desiccation-induced structuralization and glass formation of group 3 late embryogenesis abundant protein model peptides. Biochemistry 49:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Solomon A, Salomon R, Paperna I, Glazer I (2000) Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein. Parasitology 121:409–416

    Article  CAS  PubMed  Google Scholar 

  • Tapia H, Koshland DE (2014) Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 24:2758–2766

    Article  CAS  PubMed  Google Scholar 

  • Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19:1580–1589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tolleter D, Hincha DK, Macherel D (2010) A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state. Biochim Biophys Acta 1798:1926–1933

    Article  CAS  PubMed  Google Scholar 

  • Toxopeus J, Warner AH, MacRae TH (2014) Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause. Cell Stress Chaperon 19:939–948

    Article  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  CAS  PubMed  Google Scholar 

  • Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546:315–321

    Article  CAS  Google Scholar 

  • Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warner AH, Miroshnychenko O, Kozarova A, Vacratsis PO, MacRae TH, Kim J, Clegg JS (2010) Evidence for multiple group 1 late embryogenesis abundant proteins in encysted embryos of Artemia and their organelles. J Biochem 148:581–592

    Article  CAS  PubMed  Google Scholar 

  • Warner AH, Chakrabortee S, Tunnacliffe A, Clegg JS (2012) Complexity of the heat-soluble LEA proteome in Artemia species. Comp Biochem Physiol D 7:260–267

    CAS  Google Scholar 

  • Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform 4:52–71

    Article  Google Scholar 

  • Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta Protein Struct Mol Enzym 1544:196–206

    Article  CAS  Google Scholar 

  • Wu G, Zhang H, Sun J, Liu F, Ge X, Chen WH, Yu J, Wang W (2011) Diverse LEA (late embryogenesis abundant) and LEA-like genes and their responses to hypersaline stress in post-diapause embryonic development of Artemia franciscana. Comp Biochem Physiol B 160:32–39

    Article  CAS  PubMed  Google Scholar 

  • Xie G, Timasheff SN (1997) The thermodynamic mechanism of protein stabilization by trehalose. Biophys Chem 64:25–43

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the National Science Foundation (Grants IOS-0920254 and IOS-1457061/IOS-1456809) and the National Institutes of Health (Grant 2R01 DK046270-14A1) for support of our ongoing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Hand.

Additional information

Special topic: Desiccation Biology. Guest editors: Olivier Leprince and Julia Buitink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hand, S.C., Menze, M.A. Molecular approaches for improving desiccation tolerance: insights from the brine shrimp Artemia franciscana . Planta 242, 379–388 (2015). https://doi.org/10.1007/s00425-015-2281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2281-9

Keywords

Navigation