Skip to main content
Log in

Fungal hemicellulose-degrading enzymes cause physical property changes concomitant with solubilization of cell wall polysaccharides

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Physical properties of wheat coleoptile segments decreased after treatment with hemicellulose-degrading enzymes, indicating that hemicellulosic polysaccharides function to control the strength of primary cell walls.

Abstract

Changes in the physical properties of plant cell walls, a viscoelastic structure, are thought to be one of the growth-limiting factors for plants and one of the infection-affecting factors for fungi. To study the significance of hemicellulosic polysaccharides that form cross-bridges between cellulose microfibrils in controlling cell wall strength in monocot plants, the effects of hemicellulose degradation by recombinant Magnaporthe oryzae xylanase and 1,3-1,4-β-glucanase, and recombinant Aspergillus oryzae xyloglucanase on the physical properties and polysaccharide solubilization were investigated using wheat (Triticum aestivum L.) coleoptiles. Treatments with xylanase or 1,3-1,4-β-glucanase significantly decreased the viscosity and elasticity of wheat coleoptile segments. In addition, xyloglucanase treatment slightly decreased the viscoelasticity. Furthermore, 1,3-1,4-β-glucan polymer was solubilized during hydrolysis with xylanase and xyloglucanase, even though neither enzyme had hydrolytic activity towards 1,3-1,4-β-glucan. These results suggest that xylan and xyloglucan interact with 1,3-1,4-β-glucan and that the composites and hemicellulosic polysaccharides form inter-molecular bridges. Degradation of these bridges causes decreases in the physical properties, resulting in increased extensibility of the cell walls. These findings provide a testable model in which wheat coleoptile cell walls are loosened by the degradation of hemicellulosic polysaccharides and hemicellulose-degrading enzymes play a significant role in loosening the walls during fungal infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Carpita NC (1983) Hemicellulosic polymers of cell walls of Zea coleoptiles. Plant Physiol 72:515–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Darvill AG, McNeil M, Albersheim P, Delmer DP (1980) The primary cell walls of higher plants. In: Tolbert NE (ed) The biochemistry of plants, vol 1. Academic Press, New York, pp 91–162

    Google Scholar 

  • Fincher GB (2009) Exploring the evolution of (1,3;1,4)-β-d-glucans in plant cell walls: comparative genomics can help! Curr Opin Plant Biol 12:140–147

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (1989) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Plant Physiol 75:532–536

    Article  CAS  Google Scholar 

  • Gibeaut DM, Pauly M, Bacic A, Fincher GB (2005) Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta 221:729–738

    Article  CAS  PubMed  Google Scholar 

  • Guillén D, Sánchez S, Rodriguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechbol 85:1241–1249

    Article  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  CAS  Google Scholar 

  • Hayashi T, Wong YS, Maclachlan G (1984) Pea xyloglucan and cellulose. II. Hydrolysis by pea endo-1,4-β-glucanases. Plant Physiol 75:605–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoson T, Nevins DJ (1989) β-d-Glucan antibodies inhibit anxin-induced cell elongation and changes in the cell wall of Zea coleoptile segments. Plant Physiol 90:1353–1358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inouhe M, Nevins DJ (1991) Inhibition of auxin-induced cell elongation of maize coleoptiles by antibodies specific for cell wall glucanases. Plant Physiol 96:426–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito J, Fujita Y, Ueda M, Fukuda H, Kondo A (2004) Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains. Biotechnol Prog 20:688–691

    Article  CAS  PubMed  Google Scholar 

  • Kamata Y, Rector D, Kinsella JE (1988) Influence of temperature of measurement on creep phenomena in glycinin gels. J Food Sci 53:589–591

    Article  CAS  Google Scholar 

  • Kato Y, Nevins DJ (1985) A (1→3)-β-d-glucan isolated from Zea shoot cell wall preparations. Plant Physiol 78:20–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labavitch JM, Lay PM (1974) Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol 53:669–673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller M (1972) A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273–279

    Article  Google Scholar 

  • Nguyen QB, Itoh K, Vu BV, Tosa Y, Nakayashiki H (2011) Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Mol Microbiol 81:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Park YW, Tominaga R, Sugiyama J, Furuta Y, Tanimoto E, Samejima M, Sakai F, Hayashi T (2003) Enhancement of growth by expression of poplar cellulose in Arabidopsis thaliana. Plant J 33:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Roulin S, Buchala AJ, Fincher GB (2002) Induction of (1→3, 1→4)-β-d-glucan hydrolases in leaves of dark-incubated barley seedlings. Planta 215:51–59

    Article  CAS  PubMed  Google Scholar 

  • Sakurai N, Nishitani K, Masuda Y (1979) Auxin-induced changes in the molecular weight of hemicellulosic polysaccharides of the Avena coleoptile cell wall. Plant Cell Physiol 20:1349–1357

    CAS  Google Scholar 

  • Scalbert A, Monties B, Lallemand JY, Guittet E, Rolando C (1985) Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24:1359–1362

    Article  CAS  Google Scholar 

  • Sherwood RT, Vance CP (1990) Resistance to fungal penetration in Gramineae. Phytopathology 70:273–279

    Article  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabuchi A, Li LC, Cosgrove DJ (2011) Matrix solubilization and cell wall weakening by β-expansin (group-1 allergen) from maize pollen. Plant J 68:546–559

    Article  CAS  PubMed  Google Scholar 

  • Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35:585–657

    Article  CAS  Google Scholar 

  • Takahashi M, Takahashi H, Nakano Y, Konishi T, Terauchi R, Takeda T (2010) Characterization of a cellobiohydrolase (MoCel6A) produced by Magnaporthe oryzae. Appl Environ Microbiol 76:6583–6590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi M, Yoshioka K, Imai T, Miyoshi Y, Nakano Y, Yoshida K, Furuta Y, Watanabe T, Sugiyama J, Takeda T (2013) Degradation and synthesis of β-glucans by a Magnaporthe oryzae endotransglucosylase, glucoside hydrolase 7 family. J Biol Chem 288:13821–13830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proc Natl Acad Sci USA 99:9055–9060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda H, Sugahara T, Kotake T, Nakagawa N, Sakurai N (2010) Sugar treatment inhibits IAA-induced expression of endo-1,3:1,4-β-glucanase EI transcripts in barley coleoptile segments. Physiol Plant 139:413–420

    CAS  PubMed  Google Scholar 

  • Takeda T, Takahashi M, Nakanishi-Masuno T, Nakano Y, Saitoh H, Hirabuchi A, Fujisawa S, Terauchi R (2010) Characterization of endo-1,3-1,4-β-glucanases in GH family 12 from Magnaporthe oryzae. Appl Microbiol Biotechnol 88:1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto E, Fujii S, Yamamoto R, Inanaga S (2000) Measurement of viscoelastic properties of root cell walls affected by low pH in lateral roots of Pisum sativum L. Plant Soil 226:21–28

    Article  CAS  Google Scholar 

  • Woodward JR, Fincher GB, Stone BA (1983) Water-soluble (1→3), (1→4)-β-d-glucans from barley (Hordeum vulgare) endosperm II. Fine structure. Carbohydr Polym 3:207–225

    Article  CAS  Google Scholar 

  • Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan S, Wu Y, Cosgrove DJ (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol 127:324–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author contribution

M.T., Y. N. and T.T. performed research; R. Y. and N. S. analyzed data; T.T. designed research; T.T. wrote the manuscript. All authors read and approved the manuscript.

Acknowledgments

This work was supported by Iwate Prefecture.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takumi Takeda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, M., Yamamoto, R., Sakurai, N. et al. Fungal hemicellulose-degrading enzymes cause physical property changes concomitant with solubilization of cell wall polysaccharides. Planta 241, 359–370 (2015). https://doi.org/10.1007/s00425-014-2176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2176-1

Keywords

Navigation