Skip to main content
Log in

Expression of an amylosucrase gene in potato results in larger starch granules with novel properties

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Expression of amylosucrase in potato resulted in larger starch granules with rough surfaces and novel physico-chemical properties, including improved freeze–thaw stability, higher end viscosity, and better enzymatic digestibility.

Starch is a very important carbohydrate in many food and non-food applications. In planta modification of starch by genetic engineering has significant economic and environmental benefits as it makes the chemical or physical post-harvest modification obsolete. An amylosucrase from Neisseria polysaccharea fused to a starch-binding domain (SBD) was introduced in two potato genetic backgrounds to synthesize starch granules with altered composition, and thereby to broaden starch applications. Expression of SBD–amylosucrase fusion protein in the amylose-containing potato resulted in starch granules with a rough surface, a twofold increase in median granule size, and altered physico-chemical properties including improved freeze–thaw stability, higher end viscosity, and better enzymatic digestibility. These effects are possibly a result of the physical interaction between amylosucrase and starch granules. The modified larger starches not only have great benefit to the potato starch industry by reducing losses during starch isolation, but also have an advantage in many food applications such as frozen food due to its extremely high freeze–thaw stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albenne C, Skov LK, Mirza O, Gajhede M, Potocki-Veronese G, Monsan P, Remaud-Simeon M (2002) Maltooligosaccharide disproportionation reaction: an intrinsic property of amylosucrase from Neisseria polysaccharea. FEBS Lett 527:67–70

    Article  CAS  PubMed  Google Scholar 

  • Albenne C, Skov LK, Tran V, Gajhede M, Monsan P, Remaud-Simeon M, Andre-Leroux G (2007) Towards the molecular understanding of glycogen elongation by amylosucrase. Proteins 66:118–126

    Article  CAS  PubMed  Google Scholar 

  • Blennow A, Bay-Smidt AM, Leonhardt P, Bandsholm O, Madsen MH (2003) Starch paste stickiness is a relevant native starch selection criterion for wet-end paper manufacturing. Starch/Stärke 55:381–389

    Article  CAS  Google Scholar 

  • Copeland L, Blazek J, Salman H, Tang MC (2009) Form and functionality of starch. Food Hydrocoll 23:1527–1534

    Article  CAS  Google Scholar 

  • Cottrell JE, Duffus CM, Paterson L, Mackay GR (1995) Properties of potato starch: effects of genotype and growing conditions. Phytochemistry 40(4):1057–1064

    Article  CAS  Google Scholar 

  • De Pater S, Caspers M, Kottenhagen M, Meima H, Ter Stege R, De Vetten N (2006) Manipulation of starch granule size distribution in potato tubers by modulation of plastid division. Plant Biotechnol J 4:123–134

    Article  PubMed  Google Scholar 

  • Edwards A, Fulton DC, Hylton CM, Jobling SA, Gidley M, Rossner U, Martin C, Smith AM (1999) A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J 17:251–261

    Article  CAS  Google Scholar 

  • Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA (1998) Starch production and industrial use. J Sci Food Agric 77:289–311

    Article  CAS  Google Scholar 

  • Gerrits N, Turk SCHJ, van Dun KPM, Hulleman SHD, Visser RGF, Weisbeek PJ, Smeekens SCM (2001) Sucrose metabolism in plastids. Plant Physiol 125:926–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grommers HE, van der Krogt DO (2009) Potato starch: production, modifications and uses. In: BeMiller J, Whistler, R (eds) Starch chemistry and technology, Chapter 11, 3rd edn. Academic Press, London, pp 511–540

  • Hehre EJ, Hamilton DM, Carlson AS (1949) Synthesis of a polysaccharide of the starchglycogen class from sucrose by a cell-free, bacterial enzyme system (amylosucrase). J Biol Chem 177:267–279

    CAS  PubMed  Google Scholar 

  • Hovenkamp-Hermelink JHM, Vries JN, Adamse P, Jacobsen E, Witholt B, Feenstra WJ (1988) Rapid estimation of the amylose/amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Res 31:241–246

    Article  CAS  Google Scholar 

  • Howitt CA, Rahman S, Morell MK (2006) Expression of bacterial starch-binding domains in Arabidopsis increases starch granule size. Funct Plant Biol 33:257–266

    Article  CAS  Google Scholar 

  • Huang X-F, Nazarian-Firouzabadi F, Vincken J-P, Ji Q, Suurs LCJM, Visser RGF, Trindade LM (2013) Expression of an engineered granule-bound Escherichia coli glycogen branching enzyme in potato results in severe morphological changes in starch granules. Plant Biotechnol J 11:470–479

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Vincken JP, Suurs LC, Visser RG (2003) Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Mol Biol 51:789–801

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Oomen RJFJ, Vincken JP, Bolam DN, Gilbert HJ, Suurs LCJM, Visser RGF (2004) Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants. Plant Biotechnol J 2:251–260

    Article  CAS  PubMed  Google Scholar 

  • Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218. doi:10.1016/j.pbi.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  • Jobling SA, Westcott RJ, Tayal A, Jeffcoat R, Schwall GP (2002) Production of a freeze–thaw–stable potato starch by antisense inhibition of three starch synthase genes. Nat Biotechnol 20:295–299

    Article  CAS  PubMed  Google Scholar 

  • Kasemwong K, Piyachomkwan K, Wansuksri R, Sriroth K (2008) Granule sizes of canna (Canna edulis) starches and their reactivity toward hydration, enzyme hydrolysis and chemical substitution. Starch-Stärke 60:624–633

    Article  CAS  Google Scholar 

  • Kaur L, Singh J, McCarthy OJ, Singh H (2007) Physico-chemical, rheological and structural properties of fractionated potato starches. J Food Eng 82:383–394

    Article  CAS  Google Scholar 

  • Kloosterman B, Vorst O, Hall RD, Visser RGF, Bachem CW (2005) Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnol J 3:505–519

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman B, De Koeyer D, Griffiths R, Flinn B, Steuernagel B, Scholz U, Sonnewald S, Sonnewald U, Bryan GJ, Prat S, Banfalvi Z, Hammond JP, Geigenberger P, Nielsen KL, Visser RG, Bachem CW (2008) Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Funct Integr Genomics 8:329–340

    Article  CAS  PubMed  Google Scholar 

  • Kossmann J, Lloyd J (2000) Understanding and influencing starch biochemistry. Crit Rev Biochem Mol Biol 35:141–196

    CAS  PubMed  Google Scholar 

  • Kuipers A, Jacobsen E, Visser R (1994) Formation and deposition of amylose in the potato tuber starch granule are affected by the reduction of granule-bound starch synthase gene expression. Plant Cell 6:43–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd JR, Landschutze V, Kossmann J (1999) Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin. Biochem J 338(Pt 2):515–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madsen MH, Christensen DH (1996) Changes in viscosity properties of potato starch during growth. Starch-Stärke 48:245–249

    Article  CAS  Google Scholar 

  • Nazarian Firouzabadi F, Vincken J-P, Ji Q, Suurs LJM, Buléon A, Visser RF (2007a) Accumulation of multiple-repeat starch-binding domains (SBD2–SBD5) does not reduce amylose content of potato starch granules. Planta 225:919–933

    Article  Google Scholar 

  • Nazarian Firouzabadi F, Kok-Jacon G, Vincken J-P, Ji Q, Suurs LJM, Visser RF (2007b) Fusion proteins comprising the catalytic domain of mutansucrase and a starch-binding domain can alter the morphology of amylose-free potato starch granules during biosynthesis. Transgenic Res 16(5):645–656

    Article  CAS  PubMed  Google Scholar 

  • Noda T, Takigawa S, Matsuura-Endo C, Kim S-J, Hashimoto N, Yamauchi H, Hanashiro I, Takeda Y (2005) Physicochemical properties and amylopectin structures of large, small, and extremely small potato starch granules. Carbohydr Polym 60:245–251

    Article  CAS  Google Scholar 

  • Noda T, Takigawa S, Matsuura-Endo C, Suzuki T, Hashimoto N, Kottearachchi NS, Yamauchi H, Zaidul ISM (2008) Factors affecting the digestibility of raw and gelatinized potato starches. Food Chem 110:465–470

    Article  CAS  Google Scholar 

  • Parker R, Ring SG (2001) Aspects of the physical chemistry of starch. J Cereal Sci 34:1–17

    Article  CAS  Google Scholar 

  • Pilon M, Wienk H, Sips W, de Swaaf M, Talboom I, Rvt Hof, de Korte-Kool G, Demel R, Weisbeek P, de Kruijff B (1995) Functional domains of the ferredoxin transit sequence involved in chloroplast import. J Biol Chem 270:3882–3893

    Article  CAS  PubMed  Google Scholar 

  • Potocki de Montalk G, Remaud-Simeon M, Willemot RM, Sarcabal P, Planchot V, Monsan P (2000) Amylosucrase from Neisseria polysaccharea: novel catalytic properties. FEBS Lett 471:219–223

    Article  CAS  PubMed  Google Scholar 

  • Putaux JL, Potocki-Veronese G, Remaud-Simeon M, Buleon A (2006) Alpha-D-glucan-based dendritic nanoparticles prepared by in vitro enzymatic chain extension of glycogen. Biomacromolecules 7:1720–1728

    Article  CAS  PubMed  Google Scholar 

  • Ridout MJ, Parker ML, Hedley CL, Bogracheva TY, Morris VJ (2004) Atomic force microscopy of pea starch: origins of image contrast. Biomacromolecules 5(4):1519–1527

    Article  CAS  PubMed  Google Scholar 

  • Roper H (2002) Renewable raw materials in Europe—industrial utilisation of starch and sugar [1]. Starch 54:89–99

    Article  CAS  Google Scholar 

  • Safford R, Jobling SA, Sidebottom CM, Westcott RJ, Cooke D, Tober KJ, Strongitharm BH, Russell AL, Gidley MJ (1998) Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydr Polym 35:155–168

    Article  CAS  Google Scholar 

  • Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi YC, Gidley MJ, Jobling SA (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18:551–554

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Singh N (2001) Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chem 75:67–77

    Article  CAS  Google Scholar 

  • Skov LK, Mirza O, Henriksen A, De Montalk GP, Remaud-Simeon M, Sarçabal P, Willemot R-M, Monsan P, Gajhede M (2001) Amylosucrase, a glucan-synthesizing enzyme from the α-amylase family. J Biol Chem 276:25273–25278

    Article  CAS  PubMed  Google Scholar 

  • Treadway R (1952) Uses of potato starch and potato flour in the United States. Am J Potato Res 29:79–84

    Article  Google Scholar 

  • Visser RG, Somhorst I, Kuipers GJ, Ruys NJ, Feenstra WJ, Jacobsen E (1991) Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet 225:289–296

    Article  CAS  PubMed  Google Scholar 

  • Wenzler H, Mignery G, Fisher L, Park W (1989) Sucrose-regulated expression of a chimeric potato tuber gene in leaves of transgenic tobacco plants. Plant Mol Biol 13:347–354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly financed by the Ministry of Science, Research and Technology of Iran. The authors would like to thank Professor Pierre Monsan (INSA, University of Toulouse, France) for providing the Amylosucrase gene. We are grateful to Mrs. Isolde Pereira and Mr. Dirkjan Huigen for the tissue culture and greenhouse works, respectively. We also wish to thank Dr. Vic Morris and Dr. Mary Parker (the Institute of Food Research, UK) for their help on starch section imaging. We are very thankful to Dr. Bjorn Kloosterman who kindly helped with microarray experiment and Dr. Chris Maliepaard for statistical data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa M. Trindade.

Additional information

In memory of Luc Suurs who unexpectedly passed away on August 2, 2013.

Xing-Feng Huang and Farhad Nazarian-Firouzabadi have contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XF., Nazarian-Firouzabadi, F., Vincken, JP. et al. Expression of an amylosucrase gene in potato results in larger starch granules with novel properties. Planta 240, 409–421 (2014). https://doi.org/10.1007/s00425-014-2095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2095-1

Keywords

Navigation