Skip to main content

Advertisement

Log in

Acid–base transporters in the context of tumor heterogeneity

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The copious metabolic acid production and -extrusion by cancer cells render poorly vascularized regions of solid tumors highly acidic. A growing list of proton - and bicarbonate transporters has been suggested to contribute to net acid extrusion from cancer cells, and/or been shown to be dysregulated and favor malignant development in various cancers. The great majority of these roles have been studied at the level of the cancer cells. However, recent advances in understanding of the cellular and physicochemical heterogeneity of solid tumors both enable and necessitate a reexamination of the regulation and roles of acid–base transporters in such malignancies. This review will briefly summarize the state-of-the-art, with a focus on the SLC9A and SLC4A families, for which most evidence is available. This is followed by a discussion of key concepts and open questions arising from recent insights and of the challenges that need to be tackled to address them. Finally, opportunities and challenges in therapeutic targeting of the acid–base transportome in cancers will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian M, Pooley KA, Luben R, Eccles D, Evans DG, Fletcher O, Johnson N et al (2009) Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41:585–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amith SR, Wilkinson JM, Baksh S, Fliegel L (2015) The Na+/H+ exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells. Oncotarget 6:1262–1275. https://doi.org/10.18632/oncotarget.2860

    Article  PubMed  Google Scholar 

  3. Andersen AP, Flinck M, Oernbo EK, Pedersen NB, Viuff BM, Pedersen SF (2016) Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol Cancer 15:45. https://doi.org/10.1186/s12943-016-0528-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andersen AP, Samsøe-Petersen J, Oernbo EK, Boedtkjer E, Moreira JMA, Kveiborg M, Pedersen SF (2018) The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int J Cancer 142:2529–2542. https://doi.org/10.1002/ijc.31276

    Article  CAS  PubMed  Google Scholar 

  5. Boedtkjer E, Bentzon JF, Dam VS, Aalkjaer C (2016) Na+, HCO3–cotransporter NBCn1 increases pHi gradients, filopodia, and migration of smooth muscle cells and promotes arterial remodelling. CardiovascRes 111:227–239

    Article  CAS  Google Scholar 

  6. Boedtkjer E, Damkier HH, Aalkjaer C (2012) NHE1 knockout reduces blood pressure and arterial media/lumen ratio with no effect on resting pH(i) in the vascular wall. JPhysiol 590:1895–1906

    CAS  Google Scholar 

  7. Boedtkjer E, Moreira JMA, Mele M, Vahl P, Wielenga VT, Christiansen PM, Jensen VED, Pedersen SF, Aalkjaer C (2013) Contribution of Na+, HCO3–cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer 132:1288–1299. https://doi.org/10.1002/ijc.27782

    Article  CAS  PubMed  Google Scholar 

  8. Boedtkjer E, Pedersen SF (2020) The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol 82:103–126. https://doi.org/10.1146/annurev-physiol-021119-034627

    Article  CAS  PubMed  Google Scholar 

  9. Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Fuchtbauer AC, Simonsen U, Fuchtbauer EM, Aalkjaer C (2011) Disruption of Na+, HCO(3)(-) cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca(2)(+) sensitivity, and hypertension development in mice. Circulation 124:1819–1829

    Article  CAS  PubMed  Google Scholar 

  10. Bohn T, Rapp S, Luther N, Klein M, Bruehl T-J, Kojima N, Aranda Lopez P, Hahlbrock J, Muth S, Endo S, Pektor S, Brand A, Renner K, Popp V, Gerlach K, Vogel D, Lueckel C, Arnold-Schild D, Pouyssegur J, Kreutz M, Huber M, Koenig J, Weigmann B, Probst H-C, von Stebut E, Becker C, Schild H, Schmitt E, Bopp T (2018) Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol 19:1319–1329. https://doi.org/10.1038/s41590-018-0226-8

    Article  CAS  PubMed  Google Scholar 

  11. Bonde L, Boedtkjer E (2017) Extracellular acidosis and very low [Na(+) ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells. Acta Physiol (Oxf) 221:129–141. https://doi.org/10.1111/apha.12877

    Article  CAS  PubMed  Google Scholar 

  12. Boyd PS, Breitling J, Korzowski A, Zaiss M, Franke VL, Mueller-Decker K, Glinka A, Ladd ME, Bachert P, Goerke S (2022) Mapping intracellular pH in tumors using amide and guanidyl CEST-MRI at 9.4 T. Magn Reson Med 87:2436–2452. https://doi.org/10.1002/mrm.29133

    Article  CAS  PubMed  Google Scholar 

  13. Brisson L, Driffort V, Benoist L, Poet M, Counillon L, Antelmi E, Rubino R, Besson P, Labbal F, Chevalier S, Reshkin SJ, Gore J, Roger S (2013) NaV1.5 Na(+) channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J Cell Sci 126:4835–4842

    CAS  PubMed  Google Scholar 

  14. Busco G, Cardone RA, Greco MR, Bellizzi A, Colella M, Antelmi E, Mancini MT, Dell’Aquila ME, Casavola V, Paradiso A, Reshkin SJ (2010) NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. FASEB J 24:3903–3915

    Article  CAS  PubMed  Google Scholar 

  15. Calcinotto A, Filipazzi P, Grioni M, Iero M, De MA, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, Huber V, Parmiani G, Generoso L, Santinami M, Borghi M, Fais S, Bellone M, Rivoltini L (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–2756

    Article  CAS  PubMed  Google Scholar 

  16. Cappellesso F, Orban MP, Shirgaonkar N, Berardi E, Serneels J, Neveu MA, Di Molfetta D, Piccapane F, Caroppo R, Debellis L, Ostyn T, Joudiou N, Mignion L, Richiardone E, Jordan BF, Gallez B, Corbet C, Roskams T, DasGupta R, Tejpar S, Di Matteo M, Taverna D, Reshkin SJ, Topal B, Virga F, Mazzone M (2022) Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer. Nat Cancer 3:1464–1483. https://doi.org/10.1038/s43018-022-00470-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cardone RA, Greco MR, Zeeberg K, Zaccagnino A, Saccomano M, Bellizzi A, Bruns P, Menga M, Pilarsky C, Schwab A, Alves F, Kalthoff H, Casavola V, Reshkin SJ (2015) A novel NHE1-centered signaling cassette drives epidermal growth factor receptor-dependent pancreatic tumor metastasis and is a target for combination therapy. Neoplasia 17:155–166. https://doi.org/10.1016/j.neo.2014.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carroll CP, Bolland H, Vancauwenberghe E, Collier P, Ritchie AA, Clarke PA, Grabowska AM, Harris AL, McIntyre A (2022) Targeting hypoxia regulated sodium driven bicarbonate transporters reduces triple negative breast cancer metastasis. Neoplasia 25:41–52. https://doi.org/10.1016/j.neo.2022.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, McAndrews KM, Kalluri R (2021) Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 18:792–804. https://doi.org/10.1038/s41571-021-00546-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng H, Qiu Y, Xu Y, Chen L, Ma K, Tao M, Frankiw L, Yin H, Xie E, Pan X, Du J, Wang Z, Zhu W, Chen L, Zhang L, Li G (2023) Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness. Nat Metab 5:314–330. https://doi.org/10.1038/s42255-022-00730-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563. https://doi.org/10.1038/nature13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corbet C, Feron O (2017) Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer 17:577–593. https://doi.org/10.1038/nrc.2017.77

    Article  CAS  PubMed  Google Scholar 

  24. Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94. https://doi.org/10.1038/nrclinonc.2017.166

    Article  CAS  PubMed  Google Scholar 

  25. Damaghi M, Tafreshi NK, Lloyd MC, Sprung R, Estrella V, Wojtkowiak JW, Morse DL, Koomen JM, Bui MM, Gatenby RA, Gillies RJ (2015) Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. NatCommun 6:8752

    CAS  Google Scholar 

  26. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17:457–474. https://doi.org/10.1038/nrc.2017.51

    Article  CAS  PubMed  Google Scholar 

  27. Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. JCell Biol 159:1087–1096

    Article  CAS  Google Scholar 

  28. Dey P, Kimmelman AC, DePinho RA (2021) Metabolic codependencies in the tumor microenvironment. Cancer Discov 11:1067–1081. https://doi.org/10.1158/2159-8290.Cd-20-1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elingaard-Larsen LO, Rolver MG, Sørensen EE, Pedersen SF (2022) How reciprocal interactions between the tumor microenvironment and ion transport proteins drive cancer progression. Rev Physiol Biochem Pharmacol 182:1–38. https://doi.org/10.1007/112_2020_23

    Article  CAS  PubMed  Google Scholar 

  30. Erra Díaz F, Ochoa V, Merlotti A, Dantas E, Mazzitelli I, Gonzalez Polo V, Sabatté J, Amigorena S, Segura E, Geffner J (2020) Extracellular acidosis and mTOR inhibition drive the differentiation of human monocyte-derived dendritic cells. Cell Rep 31:107613. https://doi.org/10.1016/j.celrep.2020.107613

    Article  CAS  PubMed  Google Scholar 

  31. Flinck M, Kramer SH, Pedersen SF (2018) Roles of pH in control of cell proliferation. Acta Physiol (Oxf) 223:e13068. https://doi.org/10.1111/apha.13068

    Article  CAS  PubMed  Google Scholar 

  32. Flinck M, Kramer SH, Schnipper J, Andersen AP, Pedersen SF (2018) The acid-base transport proteins NHE1 and NBCn1 regulate cell cycle progression in human breast cancer cells. Cell Cycle 17:1056–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJ, Jacobson MP, Barber DL (2008) Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J Cell Biol

  34. Frantz C, Karydis A, Nalbant P, Hahn KM, Barber DL (2007) Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells. J Cell Biol 179:403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galenkamp KMO, Sosicka P, Jung M, Recouvreux MV, Zhang Y, Moldenhauer MR, Brandi G, Freeze HH, Commisso C (2020) Golgi acidification by NHE7 regulates cytosolic pH homeostasis in pancreatic cancer cells. Cancer Discov 10:822–835. https://doi.org/10.1158/2159-8290.Cd-19-1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao W, Chang G, Wang J, Jin W, Wang L, Lin Y, Li H, Ma L, Li Q, Pang T (2011) Inhibition of K562 leukemia angiogenesis and growth by selective Na+/H+ exchanger inhibitor cariporide through down-regulation of pro-angiogenesis factor VEGF. LeukRes 35:1506–1511

    CAS  Google Scholar 

  37. Gorbatenko A, Olesen CW, Boedtkjer E, Pedersen SF (2014) Regulation and roles of bicarbonate transporters in cancer. Front Physiol 5:130

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gorbatenko A, Olesen CW, Loebl N, Sigurdsson HH, Bianchi C, Pedraz-Cuesta E, Christiansen J, Pedersen SF (2016) Oncogenic p95HER2 regulates Na+-HCO 3- cotransporter NBCn1 mRNA stability in breast cancer cells via 3’UTR dependent processes. BiochemJ 473:4027–4044

    Article  CAS  Google Scholar 

  39. Gorbatenko A, Olesen CW, Morup N, Thiel G, Kallunki T, Valen E, Pedersen SF (2014) ErbB2 upregulates the Na+, HCO3–cotransporter NBCn1/SLC4A7 in human breast cancer cells via Akt, ERK, Src, and Kruppel-like factor 4. FASEB J 28:350–363

    Article  CAS  PubMed  Google Scholar 

  40. Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–2021. https://doi.org/10.1182/blood-2005-05-1795

    Article  CAS  PubMed  Google Scholar 

  41. Grillo-Hill BK, Choi C, Jimenez-Vidal M, Barber DL (2015) Increased H(+) efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. Elife 4

  42. Grillon E, Farion R, Fablet K, De WM, Tse CM, Donowitz M, Remy C, Coles JA (2011) The spatial organization of proton and lactate transport in a rat brain tumor. PLoS One 6:e17416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guan X, Hasan MN, Begum G, Kohanbash G, Carney KE, Pigott VM, Persson AI, Castro MG, Jia W, Sun D (2018) Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death Dis 9:1010. https://doi.org/10.1038/s41419-018-1062-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guan X, Luo L, Begum G, Kohanbash G, Song Q, Rao A, Amankulor N, Sun B, Sun D, Jia W (2018) Elevated Na/H exchanger 1 (SLC9A1) emerges as a marker for tumorigenesis and prognosis in gliomas. J Exp Clin Cancer Res 37:255. https://doi.org/10.1186/s13046-018-0923-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasan MN, Luo L, Ding D, Song S, Bhuiyan MIH, Liu R, Foley LM, Guan X, Kohanbash G, Hitchens TK, Castro MG, Zhang Z, Sun D (2021) Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells. Theranostics 11:1295–1309. https://doi.org/10.7150/thno.50150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hulikova A, Black N, Hsia LT, Wilding J, Bodmer WF, Swietach P (2016) Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid. Proc Natl Acad Sci U S A 113:E5344-5353. https://doi.org/10.1073/pnas.1610954113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hulikova A, Vaughan-Jones RD, Swietach P (2011) Dual role of CO2/HCO3(-) formula buffer in the regulation of intracellular pH of three-dimensional tumor growths. J Biol Chem 286:13815–13826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hwang S, Shin DM, Hong JH (2020) Protective role of IRBIT on sodium bicarbonate cotransporter-n1 for migratory cancer cells. Pharmaceutics 12. https://doi.org/10.3390/pharmaceutics12090816

  49. Karki P, Li X, Schrama D, Fliegel L (2011) B-Raf associates with and activates the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem 286:13096–13105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karydis A, Jimenez-Vidal M, Denker SP, Barber DL (2009) Mislocalized scaffolding by the Na-H exchanger NHE1 dominantly inhibits fibronectin production and TGF-beta activation. Mol Biol Cell 20:2327–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khosrowabadi E, Rivinoja A, Risteli M, Tuomisto A, Salo T, Mäkinen MJ, Kellokumpu S (2021) SLC4A2 anion exchanger promotes tumour cell malignancy via enhancing net acid efflux across golgi membranes. Cell Mol Life Sci 78:6283–6304. https://doi.org/10.1007/s00018-021-03890-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kondapalli KC, Llongueras JP, Capilla-Gonzalez V, Prasad H, Hack A, Smith C, Guerro-Cazares H, Quinones-Hinojosa A, Rao R (2015) A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. NatCommun 6:6289

    CAS  Google Scholar 

  53. Kong SC, Gianuzzo A, Novak I, Pedersen SF (2014) Acid-base transport in pancreatic cancer: molecular mechanisms and clinical potential. BiochemCell Biol 92:449–459

    CAS  Google Scholar 

  54. Korzowski A, Weinfurtner N, Mueller S, Breitling J, Goerke S, Schlemmer HP, Ladd ME, Paech D, Bachert P (2020) Volumetric mapping of intra- and extracellular pH in the human brain using (31) P MRSI at 7T. Magn Reson Med 84:1707–1723. https://doi.org/10.1002/mrm.28255

    Article  CAS  PubMed  Google Scholar 

  55. L’Allemain G, Paris S, Pouysségur J (1985) Role of a Na+-dependent Cl-/HCO3- exchange in regulation of intracellular pH in fibroblasts. J Biol Chem 260:4877–4883

    Article  CAS  PubMed  Google Scholar 

  56. Lagarde AE, Franchi AJ, Paris S, Pouyssegur JM (1988) Effect of mutations affecting Na+: H+ antiport activity on tumorigenic potential of hamster lung fibroblasts. JCell Biochem 36:249–260

    Article  CAS  Google Scholar 

  57. Lauritzen G, Jensen MBF, Boedtkjer E, Dybboe R, Aalkjaer C, Nylandsted J, Pedersen SF (2010) NBCn1 and NHE1 expression and activity in Delta NErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pH(i) regulation and chemotherapy resistance. Exp Cell Res 316:2538–2553. https://doi.org/10.1016/j.yexcr.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  58. Lauritzen G, Stock C-M, Lemaire J, Lund SF, Jensen MF, Damsgaard B, Petersen KS, Wiwel M, Ronnov-Jessen L, Schwab A, Pedersen SF (2012) The Na+/H+ exchanger NHE1, but not the Na+, HCO3- cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Lett 317:172–183. https://doi.org/10.1016/j.canlet.2011.11.023

    Article  CAS  PubMed  Google Scholar 

  59. Lee S, Axelsen TV, Andersen AP, Vahl P, Pedersen SF, Boedtkjer E (2016) Disrupting Na(+), HCO(3)(-)-cotransporter NBCn1 (Slc4a7) delays murine breast cancer development. Oncogene 35:2112–2122

    Article  CAS  PubMed  Google Scholar 

  60. Lee S, Axelsen TV, Jessen N, Pedersen SF, Vahl P, Boedtkjer E (2018) Na(+), HCO3(-)-cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene 37:5569–5584. https://doi.org/10.1038/s41388-018-0353-6

    Article  CAS  PubMed  Google Scholar 

  61. Lee S, Toft NJ, Axelsen TV, Espejo MS, Pedersen TM, Mele M, Pedersen HL, Balling E, Johansen T, Burton M, Thomassen M, Vahl P, Christiansen P, Boedtkjer E (2023) Carbonic anhydrases reduce the acidity of the tumor microenvironment, promote immune infiltration, decelerate tumor growth, and improve survival in ErbB2/HER2-enriched breast cancer. Breast Cancer Res 25:46. https://doi.org/10.1186/s13058-023-01644-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li F, Simon MC (2020) Cancer cells don’t live alone: metabolic communication within tumor microenvironments. Dev Cell 54:183–195. https://doi.org/10.1016/j.devcel.2020.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li Y, Li D, Liu Y, Wang S, Sun M, Zhang Z, Zheng X, Li J, Li Y (2022) The positive feedback loop of NHE1-ERK phosphorylation mediated by BRAF(V600E) mutation contributes to tumorigenesis and development of glioblastoma. Biochem Biophys Res Commun 588:1–7. https://doi.org/10.1016/j.bbrc.2021.11.104

    Article  CAS  PubMed  Google Scholar 

  64. Ludwig FT, Schwab A, Stock C (2013) The Na+ /H+ -exchanger (NHE1) generates pH nanodomains at focal adhesions. JCell Physiol 228:1351–1358

    Article  CAS  Google Scholar 

  65. Martin C, Pedersen SF, Schwab A, Stock C (2011) Intracellular pH gradients in migrating cells. Am J Physiol Cell Physiol 300:C490–C495. https://doi.org/10.1152/ajpcell.00280.2010

    Article  CAS  PubMed  Google Scholar 

  66. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311. https://doi.org/10.4049/jimmunol.177.10.7303

    Article  CAS  PubMed  Google Scholar 

  67. McIntyre A, Hulikova A, Ledaki I, Snell C, Singleton D, Steers G, Seden P, Jones D, Bridges E, Wigfield S, Li JL, Russell A, Swietach P, Harris AL (2016) Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Res 76:3744–3755

    Article  CAS  PubMed  Google Scholar 

  68. Mentzer RM Jr, Bartels C, Bolli R, Boyce S, Buckberg GD, Chaitman B, Haverich A, Knight J, Menasche P, Myers ML, Nicolau J, Simoons M, Thulin L, Weisel RD (2008) Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. AnnThoracSurg 85:1261–1270

    Google Scholar 

  69. Michl J, Monterisi S, White B, Blaszczak W, Hulikova A, Abdullayeva G, Bridges E, Yin Z, Bodmer WF, Swietach P (2023) Acid-adapted cancer cells alkalinize their cytoplasm by degrading the acid-loading membrane transporter anion exchanger 2, SLC4A2. Cell Rep 42:112601. https://doi.org/10.1016/j.celrep.2023.112601

    Article  CAS  PubMed  Google Scholar 

  70. Micke P, Strell C, Mattsson J, Martín-Bernabé A, Brunnström H, Huvila J, Sund M, Wärnberg F, Ponten F, Glimelius B, Hrynchyk I, Mauchanski S, Khelashvili S, Garcia-Vicién G, Molleví DG, Edqvist PH, Aine OR, Corvigno S, Dahlstrand H, Botling J, Segersten U, Krzyzanowska A, Bjartell A, Elebro J, Heby M, Lundgren S, Hedner C, Borg D, Brändstedt J, Sartor H, Malmström PU, Johansson M, Nodin B, Backman M, Lindskog C, Jirström K, Mezheyeuski A (2021) The prognostic impact of the tumour stroma fraction: a machine learning-based analysis in 16 human solid tumour types. EBioMedicine 65:103269. https://doi.org/10.1016/j.ebiom.2021.103269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Monet M, Poet M, Tauzin S, Fouque A, Cophignon A, Lagadic-Gossmann D, Vacher P, Legembre P, Counillon L (2016) The cleaved FAS ligand activates the Na(+)/H(+) exchanger NHE1 through Akt/ROCK1 to stimulate cell motility. SciRep 6:28008

    Google Scholar 

  72. Paradise RK, Lauffenburger DA, Van Vliet KJ (2011) Acidic extracellular pH promotes activation of integrin alpha(v)beta(3) 1. PLoS One 6:e15746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Parks SK, Chiche J, Pouyssegur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. NatRevCancer 13:611–623

    CAS  Google Scholar 

  75. Pavlova NN, Zhu J, Thompson CB (2022) The hallmarks of cancer metabolism: still emerging. Cell Metab 34:355–377. https://doi.org/10.1016/j.cmet.2022.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P (2020) Monocarboxylate transporters in cancer. Mol Metab 33:48–66. https://doi.org/10.1016/j.molmet.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  77. Pedersen AK, de Mendes Lopes MJ, Morup N, Tritsaris K, Pedersen SF (2017) Tumor microenvironment conditions alter Akt and Na+/H+ exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer. BMCCancer 17:542

    CAS  Google Scholar 

  78. Pedersen SF, Counillon L (2019) The SLC9A-C mammalian Na(+)/H(+) exchanger family: molecules, mechanisms, and physiology. Physiol Rev 99:2015–2113. https://doi.org/10.1152/physrev.00028.2018

    Article  CAS  PubMed  Google Scholar 

  79. Pedraz-Cuesta E, Fredsted J, Jensen HH, Bornebusch A, Nejsum LN, Kragelund BB, Pedersen SF (2016) Prolactin signaling stimulates invasion via Na(+)/H(+) exchanger NHE1 in T47D human breast cancer cells. Mol Endocrinol 30:693–708. https://doi.org/10.1210/me.2015-1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pethő Z, Najder K, Beel S, Fels B, Neumann I, Schimmelpfennig S, Sargin S, Wolters M, Grantins K, Wardelmann E, Mitkovski M, Oeckinghaus A, Schwab A (2023) Acid-base homeostasis orchestrated by NHE1 defines the pancreatic stellate cell phenotype in pancreatic cancer. JCI Insight 8. https://doi.org/10.1172/jci.insight.170928

  81. Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, Damaghi M, Wojtkowiak JW, Mule JJ, Ibrahim-Hashim A, Gillies RJ (2016) Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res 76:1381–1390

    Article  CAS  PubMed  Google Scholar 

  82. Putney LK, Barber DL (2003) Na-H exchange-dependent increase in intracellular pH times G(2)/M entry and transition. J Biol Chem 278:44645–44649

    Article  CAS  PubMed  Google Scholar 

  83. Ramirez C, Hauser AD, Vucic EA, Bar-Sagi D (2019) Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature 576:477–481. https://doi.org/10.1038/s41586-019-1831-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reshkin SJ, Bellizzi A, Cardone RA, Tommasino M, Casavola V, Paradiso A (2003) Paclitaxel induces apoptosis via protein kinase A- and p38 mitogen-activated protein-dependent inhibition of the Na+/H+ exchanger (NHE) NHE isoform 1 in human breast cancer cells. ClinCancer Res 9:2366–2373

    CAS  Google Scholar 

  85. Rich IN, Worthington-White D, Garden OA, Musk P (2000) Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na(+)/H(+) exchanger. Blood 95:1427–1434

    Article  CAS  PubMed  Google Scholar 

  86. Riihonen R, Nielsen S, Vaananen HK, Laitala-Leinonen T, Kwon TH (2010) Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biol 29:287–294

    Article  CAS  PubMed  Google Scholar 

  87. Röhrig F, Schulze A (2016) The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer 16:732–749. https://doi.org/10.1038/nrc.2016.89

    Article  CAS  PubMed  Google Scholar 

  88. Rolver MG, Elingaard-Larsen LO, Andersen AP, Counillon L, Pedersen SF (2020) Pyrazine ring-based Na(+)/H(+) exchanger (NHE) inhibitors potently inhibit cancer cell growth in 3D culture, independent of NHE1. Sci Rep 10:5800. https://doi.org/10.1038/s41598-020-62430-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rolver MG, Holland LKK, Ponniah M, Prasad NS, Yao J, Schnipper J, Kramer S, Elingaard-Larsen L, Pedraz-Cuesta E, Liu B, Pardo LA, Maeda K, Sandelin A, Pedersen SF (2022) Chronic acidosis rewires cancer cell metabolism through PPARα signaling. Int J Cancer 152:1668–1684. https://doi.org/10.1002/ijc.34404

    Article  CAS  Google Scholar 

  90. Rotin D, Steele-Norwood D, Grinstein S, Tannock I (1989) Requirement of the Na+/H+ exchanger for tumor growth. Cancer Res 49:205–211

    CAS  PubMed  Google Scholar 

  91. Schneider L, Stock C-M, Dieterich P, Jensen BH, Pedersen LB, Satir P, Schwab A, Christensen ST, Pedersen SF (2009) The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-alpha in the primary cilium. J Cell Biol 185:163–176. https://doi.org/10.1083/jcb.200806019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sedlyarov V, Eichner R, Girardi E, Essletzbichler P, Goldmann U, Nunes-Hasler P, Srndic I, Moskovskich A, Heinz LX, Kartnig F, Bigenzahn JW, Rebsamen M, Kovarik P, Demaurex N, Superti-Furga G (2018) The bicarbonate transporter SLC4A7 plays a key role in macrophage phagosome acidification. Cell HostMicrobe 23:766–774

    CAS  Google Scholar 

  93. Shi Y, Kim D, Caldwell M, Sun D (2013) The role of Na(+)/h (+) exchanger isoform 1 in inflammatory responses: maintaining H(+) homeostasis of immune cells. Adv Exp Med Biol 961:411–418. https://doi.org/10.1007/978-1-4614-4756-6_35

    Article  CAS  PubMed  Google Scholar 

  94. Sigurethsson HH, Olesen CW, Dybboe R, Lauritzen G, Pedersen SF (2015) Constitutively active ErbB2 regulates cisplatin-induced cell death in breast cancer cells via pro- and antiapoptotic mechanisms. MolCancer Res 13:63–77

    CAS  Google Scholar 

  95. Singh M, Afonso J, Sharma D, Gupta R, Kumar V, Rani R, Baltazar F, Kumar V (2023) Targeting monocarboxylate transporters (MCTs) in cancer: how close are we to the clinics? Semin Cancer Biol 90:1–14. https://doi.org/10.1016/j.semcancer.2023.01.007

    Article  CAS  PubMed  Google Scholar 

  96. Singh Y, Zhou Y, Shi X, Zhang S, Umbach AT, Salker MS, Lang KS, Lang F (2016) Alkaline cytosolic ph and high sodium hydrogen exchanger 1 (NHE1) Activity in Th9 Cells. J Biol Chem 291:23662–23671. https://doi.org/10.1074/jbc.M116.730259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sloth RA, Axelsen TV, Espejo MS, Toft NJ, Voss NCS, Burton M, Thomassen M, Vahl P, Boedtkjer E (2022) Loss of RPTPγ primes breast tissue for acid extrusion, promotes malignant transformation and results in early tumour recurrence and shortened survival. Br J Cancer 127:1226–1238. https://doi.org/10.1038/s41416-022-01911-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Srivastava J, Barreiro G, Groscurth S, Gingras AR, Goult BT, Critchley DR, Kelly MJ, Jacobson MP, Barber DL (2008) Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. ProcNatlAcadSciUSA 105:14436–14441

    Article  CAS  Google Scholar 

  99. Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) Migration of human melanoma cells depends on extracellular pH and Na + /H + exchange. JPhysiol 567:225–238

    CAS  Google Scholar 

  100. Stuwe L, Muller M, Fabian A, Waning J, Mally S, Noel J, Schwab A, Stock C (2007) pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 585:351–360

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sunami Y, Häußler J, Kleeff J (2020) Cellular heterogeneity of pancreatic stellate cells, mesenchymal stem cells, and cancer-associated fibroblasts in pancreatic cancer. Cancers (Basel) 12. https://doi.org/10.3390/cancers12123770

  102. Swietach P, Boedtkjer E, Pedersen SF (2023) How protons pave the way to aggressive cancers. Nat Rev Cancer. https://doi.org/10.1038/s41568-023-00628-9

    Article  PubMed  Google Scholar 

  103. Toft NJ, Axelsen TV, Pedersen HL, Mele M, Burton M, Balling E, Johansen T, Thomassen M, Christiansen PM, Boedtkjer E (2021) Acid-base transporters and pH dynamics in human breast carcinomas predict proliferative activity, metastasis, and survival. Elife 10. https://doi.org/10.7554/eLife.68447

  104. Ulmschneider B, Grillo-Hill BK, Benitez M, Azimova DR, Barber DL, Nystul TG (2016) Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation. J Cell Biol 215:345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30:36–50. https://doi.org/10.1016/j.cmet.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  106. Vukovic V, Tannock IF (1997) Influence of low pH on cytotoxicity of paclitaxel, mitoxantrone and topotecan. Br J Cancer 75:1167–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, Rees M, Ramaswamy A, Muenst S, Soysal SD, Jacobs A, Windhager J, Silina K, van den Broek M, Dedes KJ, Rodríguez Martínez M, Weber WP, Bodenmiller B (2019) A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177:1330-1345.e1318. https://doi.org/10.1016/j.cell.2019.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Warburg O (1924) Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften 12:1131–1137. https://doi.org/10.1007/BF01504608

    Article  CAS  Google Scholar 

  109. Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV, Rittenhouse NL, DePeaux K, Whetstone RD, Vignali DAA, Hand TW, Poholek AC, Morrison BM, Rothstein JD, Wendell SG, Delgoffe GM (2021) Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591:645–651. https://doi.org/10.1038/s41586-020-03045-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. White KA, Grillo-Hill BK, Barber DL (2017) Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J Cell Sci 130:663–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamagata M, Tannock IF (1996) The chronic administration of drugs that inhibit the regulation of intracellular pH: in vitro and anti-tumour effects. BrJ Cancer 73:1328–1334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to all members of my lab for stimulating discussions and to E. Boedtkjer, Aarhus University, Denmark, for insightful comments.

Funding

Related work in my lab was funded by the Novo Nordisk Foundation (NNF21OC0069598); The Danish Cancer Society (R269-A15823); The Carlsberg Foundation (CF18-0532; CF20-0491); and Independent Research Fund Denmark (0135-00139B; 0134-00218B).

Author information

Authors and Affiliations

Authors

Contributions

S.F.P. researched, conceptualized, and wrote the review and prepared the illustrations.

Corresponding author

Correspondence to Stine Helene Falsig Pedersen.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

SFP is a co-founder of SOLID Therapeutics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Physiology of systemic and cellular pH regulation in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, S.H.F. Acid–base transporters in the context of tumor heterogeneity. Pflugers Arch - Eur J Physiol 476, 689–701 (2024). https://doi.org/10.1007/s00424-024-02918-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-024-02918-z

Keywords

Navigation