Skip to main content

Advertisement

Log in

Renal and cardiac effects of the PDE9 inhibitor BAY 73–6691 in 5/6 nephrectomized rats

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

It has been suggested that the novel selective phosphodiesterase 9 (PDE9) inhibitor may improve cardiac and renal function by blocking 3′,5′-cyclic guanosine monophosphate (cGMP) degradation. 5/6 nephrectomized (5/6Nx) rats were used to investigate the effects of the PDE9 inhibitor (BAY 73–6691) on the heart and kidney. Two doses of BAY 73–6691 (1 mg/kg/day and 5 mg/kg/day) were given for 95 days. The 5/6Nx rats developed albuminuria, a decrease in serum creatinine clearance (Ccr), and elevated serum troponin T levels. Echocardiographic data showed that 5/6 nephrectomy resulted in increased fractional shortening (FS), stroke volume (SV), and left ventricular ejection fraction (EF). However, 95 days of PDE9 inhibitor treatment did not improve any cardiac and renal functional parameter. Histopathologically, 5/6 nephrectomy resulted in severe kidney and heart damage, such as renal interstitial fibrosis, glomerulosclerosis, and enlarged cardiomyocytes. Telmisartan attenuated renal interstitial fibrosis and glomerulosclerosis as well as improved cardiomyocyte size. However, except for cardiomyocyte size and renal perivascular fibrosis, BAY 73–6691 had no effect on other cardiac and renal histologic parameters. Pathway enrichment analysis using RNA sequencing data of kidney and heart tissue identified chronic kidney disease pathways, such as phosphatidylinositol 3-kinase (PI3K)—protein kinase B (Akt) signaling pathway, complement and coagulation cascades, and nuclear factor kappa B (NF-κB) signaling pathway. PDE9i did not affect any of these disease-related pathways. Two dosages of the PDE9 inhibitor BAY 73–6691 known to be effective in other rat models have only limited cardio-renal protective effects in 5/6 nephrectomized rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Almeida CB, Scheiermann C, Jang JE et al (2012) Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood 120(14):2879–2888. https://doi.org/10.1182/blood-2012-02-409524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Azevedo MF, Faucz FR, Bimpaki E et al (2014) Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 35(2):195–233. https://doi.org/10.1210/er.2013-1053

    Article  CAS  PubMed  Google Scholar 

  3. Barbosa MC, de Jesus TE, dos Santos TN, dos Santos, et al (2016) The effect of a selective inhibitor of phosphodiesterase-9 on oxidative stress, inflammation and cytotoxicity in neutrophils from patients with sickle cell anaemia. Basic Clin Pharmacol Toxicol 118(4):271–278. https://doi.org/10.1111/bcpt.12487

    Article  CAS  PubMed  Google Scholar 

  4. Boustany-Kari CM, Harrison PC, Chen H et al (2016) A soluble guanylate cyclase activator inhibits the progression of diabetic nephropathy in the ZSF1 rat. J Pharmacol Exp Ther 356(3):712–719. https://doi.org/10.1124/jpet.115.230706

    Article  CAS  PubMed  Google Scholar 

  5. Carlstrom M (2021) Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat Rev Nephrol 17(9):575–590. https://doi.org/10.1038/s41581-021-00429-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen X, Delic D, Cao Y et al (2023) Reno-protective effects of empagliflozin are linked to activation of the tubuloglomerular feedback mechanism and blunting of the complement system. Am J Physiol Cell Physiol. https://doi.org/10.1152/ajpcell.00528.2022

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Burnett JC (2018) Particulate guanylyl cyclase A/cGMP signaling pathway in the kidney: physiologic and therapeutic indications. Int J Mol Sci 19(4):1006. https://doi.org/10.3390/ijms19041006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. da Silva FH, Pereira MN, Franco-Penteado CF et al (2013) Phosphodiesterase-9 (PDE9) inhibition with BAY 73–6691 increases corpus cavernosum relaxations mediated by nitric oxide-cyclic GMP pathway in mice. Int J Impot Res 25(2):69–73. https://doi.org/10.1038/ijir.2012.35

    Article  CAS  PubMed  Google Scholar 

  9. Delic D, Wiech F, Urquhart R et al (2020) Linagliptin and telmisartan induced effects on renal and urinary exosomal miRNA expression in rats with 5/6 nephrectomy. Sci Rep 10(1):3373. https://doi.org/10.1038/s41598-020-60336-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dousa TP (1999) Cyclic-3′,5′-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney. Kidney Int 55(1):29–62. https://doi.org/10.1046/j.1523-1755.1999.00233.x

    Article  CAS  PubMed  Google Scholar 

  11. Fernandes-Cerqueira C, Sampaio-Maia B, Quelhas-Santos J et al (2013) Concerted action of ANP and dopamine D1-receptor to regulate sodium homeostasis in nephrotic syndrome. Biomed Res Int 2013:397391. https://doi.org/10.1155/2013/397391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fisher DA, Smith JF, Pillar JS et al (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem 273(25):15559–15564. https://doi.org/10.1074/jbc.273.25.15559

    Article  CAS  PubMed  Google Scholar 

  13. Franssen C, Chen S, Unger A et al (2016) Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail 4(4):312–324. https://doi.org/10.1016/j.jchf.2015.10.007

    Article  PubMed  Google Scholar 

  14. Friebe A, Sandner P, Schmidtko A (2017) Meeting report of the 8(th) International Conference on cGMP “cGMP: generators, effectors, and therapeutic implications” at Bamberg, Germany, from June 23 to 25, 2017. Naunyn Schmiedebergs Arch Pharmacol 390(12):1177–1188. https://doi.org/10.1007/s00210-017-1429-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guan Z, Miller SB, Greenwald JE (1995) Zaprinast accelerates recovery from established acute renal failure in the rat. Kidney Int 47(6):1569–1575. https://doi.org/10.1038/ki.1995.220

    Article  CAS  PubMed  Google Scholar 

  16. Kanasaki K, Shi S, Kanasaki M et al (2014) Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 63(6):2120–2131. https://doi.org/10.2337/db13-1029

    Article  CAS  PubMed  Google Scholar 

  17. Keravis T, Lugnier C (2012) Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 165(5):1288–1305. https://doi.org/10.1111/j.1476-5381.2011.01729.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolijn D, Kovacs A, Herwig M et al (2020) Enhanced cardiomyocyte function in hypertensive rats with diastolic dysfunction and human heart failure patients after acute treatment with soluble guanylyl cyclase (sGC) activator. Front Physiol 11:345. https://doi.org/10.3389/fphys.2020.00345

    Article  PubMed  PubMed Central  Google Scholar 

  19. Krishnan SM, Kraehling JR, Eitner F et al (2018) The impact of the nitric oxide (NO)/soluble guanylyl cyclase (sGC) signaling cascade on kidney health and disease: a preclinical perspective. Int J Mol Sci 19(6):1712. https://doi.org/10.3390/ijms19061712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee DI, Zhu G, Sasaki T et al (2015) Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519(7544):472–476. https://doi.org/10.1038/nature14332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Liu CN, Wei N et al (2016) Protective effects of BAY 73–6691, a selective inhibitor of phosphodiesterase 9, on amyloid-beta peptides-induced oxidative stress in in-vivo and in-vitro models of Alzheimer’s disease. Brain Res 1642:327–335. https://doi.org/10.1016/j.brainres.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  22. Liddie S, Anderson KL, Paz A et al (2012) The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. J Psychopharmacol 26(10):1375–1382. https://doi.org/10.1177/0269881112447991

    Article  CAS  PubMed  Google Scholar 

  23. Markham A, Duggan S (2021) Vericiguat: first approval. Drugs 81(6):721–726. https://doi.org/10.1007/s40265-021-01496-z

    Article  CAS  PubMed  Google Scholar 

  24. Matsushita K, Ballew SH, Wang AY et al (2022) Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol 18(11):696–707. https://doi.org/10.1038/s41581-022-00616-6

    Article  PubMed  Google Scholar 

  25. McMurray JJV, Docherty KF (2019) Phosphodiesterase-9 inhibition in heart failure: a further opportunity to augment the effects of natriuretic peptides? J Am Coll Cardiol 74(7):902–904. https://doi.org/10.1016/j.jacc.2019.07.008

    Article  PubMed  Google Scholar 

  26. Numata G, Takimoto E (2022) Cyclic GMP and PKG signaling in heart failure. Front Pharmacol 13:792798. https://doi.org/10.3389/fphar.2022.792798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orru M, Guitart X, Karcz-Kubicha M et al (2013) Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans. Neuropharmacology 67:476–484. https://doi.org/10.1016/j.neuropharm.2012.11.029

    Article  CAS  PubMed  Google Scholar 

  28. Paulus WJ, Zile MR (2021) From systemic inflammation to myocardial fibrosis: the heart failure with preserved ejection fraction paradigm revisited. Circ Res 128(10):1451–1467. https://doi.org/10.1161/CIRCRESAHA.121.318159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rudebusch J, Benkner A, Nath N et al (2022) Stimulation of soluble guanylyl cyclase (sGC) by riociguat attenuates heart failure and pathological cardiac remodelling. Br J Pharmacol 179(11):2430–2442. https://doi.org/10.1111/bph.15333

    Article  CAS  PubMed  Google Scholar 

  30. Rybalkin SD, Hinds TR, Beavo JA (2013) Enzyme assays for cGMP hydrolyzing phosphodiesterases. Methods Mol Biol 1020:51–62. https://doi.org/10.1007/978-1-62703-459-3_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saravani R, Karami-Tehrani F, Hashemi M et al (2012) Inhibition of phosphodiestrase 9 induces cGMP accumulation and apoptosis in human breast cancer cell lines, MCF-7 and MDA-MB-468. Cell Prolif 45(3):199–206. https://doi.org/10.1111/j.1365-2184.2012.00819.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scott NJA, Rademaker MT, Charles CJ et al (2019) Hemodynamic, hormonal, and renal actions of phosphodiesterase-9 inhibition in experimental heart failure. J Am Coll Cardiol 74(7):889–901. https://doi.org/10.1016/j.jacc.2019.05.067

    Article  CAS  PubMed  Google Scholar 

  33. Soderling SH, Bayuga SJ, Beavo JA (1998) Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem 273(25):15553–15558. https://doi.org/10.1074/jbc.273.25.15553

    Article  CAS  PubMed  Google Scholar 

  34. Stasch JP, Schlossmann J, Hocher B (2015) Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr Opin Pharmacol 21:95–104. https://doi.org/10.1016/j.coph.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  35. Thomas B, Matsushita K, Abate KH et al (2017) Global cardiovascular and renal outcomes of reduced GFR. J Am Soc Nephrol 28(7):2167–2179. https://doi.org/10.1681/ASN.2016050562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tremblay J, Gerzer R, Vinay P et al (1985) The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Lett 181(1):17–22. https://doi.org/10.1016/0014-5793(85)81105-4

    Article  CAS  PubMed  Google Scholar 

  37. Tsuprykov O, Ando R, Reichetzeder C et al (2016) The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy. Kidney Int 89(5):1049–1061. https://doi.org/10.1016/j.kint.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  38. Valentin JP, Qiu C, Muldowney WP et al (1992) Cellular basis for blunted volume expansion natriuresis in experimental nephrotic syndrome. J Clin Invest 90(4):1302–1312. https://doi.org/10.1172/JCI115995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Valentin JP, Ying WZ, Sechi LA et al (1996) Phosphodiesterase inhibitors correct resistance to natriuretic peptides in rats with Heymann nephritis. J Am Soc Nephrol 7(4):582–593. https://doi.org/10.1681/ASN.V74582

    Article  CAS  PubMed  Google Scholar 

  40. van der Staay FJ, Rutten K, Barfacker L et al (2008) The novel selective PDE9 inhibitor BAY 73–6691 improves learning and memory in rodents. Neuropharmacology 55(5):908–918. https://doi.org/10.1016/j.neuropharm.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  41. van Heerebeek L, Hamdani N, Falcao-Pires I et al (2012) Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126(7):830–839. https://doi.org/10.1161/CIRCULATIONAHA.111.076075

    Article  CAS  PubMed  Google Scholar 

  42. Wu XN, Huang YD, Li JX et al (2018) Structure-based design, synthesis, and biological evaluation of novel pyrimidinone derivatives as PDE9 inhibitors. Acta Pharm Sin B 8(4):615–628. https://doi.org/10.1016/j.apsb.2017.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang PX, Li ZM, Cai SD et al (2017) C33(S), a novel PDE9A inhibitor, protects against rat cardiac hypertrophy through upregulating cGMP signaling. Acta Pharmacol Sin 38(9):1257–1268. https://doi.org/10.1038/aps.2017.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Waldman SA, Rapoport RM, Murad F (1984) Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 259(23):14332–14334

    Article  CAS  PubMed  Google Scholar 

  45. Wunder F, Tersteegen A, Rebmann A et al (2005) Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol Pharmacol 68(6):1775–1781. https://doi.org/10.1124/mol.105.017608

    Article  CAS  PubMed  Google Scholar 

  46. Xia J, Hui N, Tian L et al (2022) Development of vericiguat: the first soluble guanylate cyclase (sGC) stimulator launched for heart failure with reduced ejection fraction (HFrEF). Biomed Pharmacother 149:112894. https://doi.org/10.1016/j.biopha.2022.112894

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

China Scholarship Council supported X.C. and Y.C.

Author information

Authors and Affiliations

Authors

Contributions

B.Hocher conceived and designed the study. X.C., Y.C., Z.Z., H.W. and L.Y. performed the animal experiment. X.C., Y.C., D.D., A.A.H., M.MS.G., T.K., X.S. and L.S. performed the biological and histological analyses and statistical evaluation. X.C. analyzed the final data set and wrote the initial manuscript. L.Shen, B.He, B.Hocher and B.K.Krämer supervised and significantly amended the manuscript. All authors contributed to revising and editing of the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Berthold Hocher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Delić, D., Cao, Y. et al. Renal and cardiac effects of the PDE9 inhibitor BAY 73–6691 in 5/6 nephrectomized rats. Pflugers Arch - Eur J Physiol 476, 755–767 (2024). https://doi.org/10.1007/s00424-024-02915-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-024-02915-2

Keywords

Navigation