Skip to main content
Log in

Characterization and functional role of rapid- and slow-activating delayed rectifier K+ currents in atrioventricular node cells of guinea pigs

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The atrioventricular (AV) node is the only conduction pathway where electrical impulse can pass from atria to ventricles and exhibits spontaneous automaticity. This study examined the function of the rapid- and slow-activating delayed rectifier K+ currents (IKr and IKs) in the regulation of AV node automaticity. Isolated AV node cells from guinea pigs were current- and voltage-clamped to record the action potentials and the IKr and IKs current. The expression of IKr or IKs was confirmed in the AV node cells by immunocytochemistry, and the positive signals of both channels were localized mainly on the cell membrane. The basal spontaneous automaticity was equally reduced by E4031 and HMR-1556, selective blockers of IKr and IKs, respectively. The nonselective β-adrenoceptor agonist isoproterenol markedly increased the firing rate of action potentials. In the presence of isoproterenol, the firing rate of action potentials was more effectively reduced by the IKs inhibitor HMR-1556 than by the IKr inhibitor E4031. Both E4031 and HMR-1556 prolonged the action potential duration and depolarized the maximum diastolic potential under basal and β-adrenoceptor–stimulated conditions. IKr was not significantly influenced by β-adrenoceptor stimulation, but IKs was concentration-dependently enhanced by isoproterenol (EC50: 15 nM), with a significant negative voltage shift in the channel activation. These findings suggest that both the IKr and IKs channels might exert similar effects on regulating the repolarization process of AV node action potentials under basal conditions; however, when the β-adrenoceptor is activated, IKs modulation may become more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

AV node:

Atrioventricular node

SA node:

Sinoatrial node

I K :

The delayed rectifier K+ current

I Kr :

The rapid component of delayed rectifier K+ current

I Ks :

The slow component of delayed rectifier K+ current

I Ca,L :

L-type Ca2+ current

I f :

Hyperpolarization-activated inward current

PKA:

Protein kinase A

MDP:

Maximal diastolic potential

max dV·dt−1 :

Maximum depolarizing velocity

APD90 :

Action potential duration at 90% repolarization

DMSO:

Dimethylsulfoxide

DAPI:

4′-6′-diamidino-2-phenylindole

PBS:

Phosphate-buffered saline

TBST:

Tris-buffered saline with 0.1% Tween-20

C m :

Cell membrane capacitance

References

  1. Andrew Atkinson HD (2015) Molecular investigation into the human atrioventricular node in heart failure. Anat Physiol 05. https://doi.org/10.4172/2161-0940.1000164

  2. Aréchiga-Figueroa IA, Rodríguez-Martínez M, Sánchez-Chapula JA (2011) Voltage-dependent potassium currents in feline sino-atrial node myocytes. Pflugers Arch - Eur J Physiol 462:385–396. https://doi.org/10.1007/s00424-011-0984-8

    Article  CAS  Google Scholar 

  3. Banyasz T, Jian Z, Horvath B, Khabbaz S, Izu LT, Chen-Izu Y (2014) Beta-adrenergic stimulation reverses the I Kr-I Ks dominant pattern during cardiac action potential. Pflugers Arch - Eur J Physiol 466:2067–2076. https://doi.org/10.1007/s00424-014-1465-7

    Article  CAS  Google Scholar 

  4. Bénitah JP, Gomez AM, Bailly P, Da Ponte JP, Berson G, Delgado C, Lorente P (1993) Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts. J Physiol 469:111–138. https://doi.org/10.1113/jphysiol.1993.sp019807

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bosch RF, Gaspo R, Busch AE, Lang HJ, Li GR, Nattel S (1998) Effects of the chromanol 293B, a selective blocker of the slow, component of the delayed rectifier K+ current, on repolarization in human and guinea pig ventricular myocytes. Cardiovasc Res 38:441–450. https://doi.org/10.1016/s0008-6363(98)00021-2

    Article  CAS  PubMed  Google Scholar 

  6. de Lucia C, Eguchi A, Koch WJ (2018) New insights in cardiac β-adrenergic signaling during heart failure and aging. Front Pharmacol 9:904. https://doi.org/10.3389/fphar.2018.00904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55:455–472. https://doi.org/10.1146/annurev.ph.55.030193.002323

    Article  CAS  PubMed  Google Scholar 

  8. Dilly KW, Kurokawa J, Terrenoire C, Reiken S, Lederer WJ, Marks AR, Kass RS (2004) Overexpression of beta2-adrenergic receptors cAMP-dependent protein kinase phosphorylates and modulates slow delayed rectifier potassium channels expressed in murine heart: evidence for receptor/channel co-localization. J Biol Chem 279:40778–40787. https://doi.org/10.1074/jbc.M406010200

    Article  CAS  PubMed  Google Scholar 

  9. Ding WG, Toyoda F, Matsuura H (2002) Blocking action of chromanol 293B on the slow component of delayed rectifier K(+) current in guinea-pig sino-atrial node cells. Br J Pharmacol 137:253–262. https://doi.org/10.1038/sj.bjp.0704861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ding WG, Xie Y, Toyoda F, Matsuura H (2014) Improved functional expression of human cardiac kv1.5 channels and trafficking-defective mutants by low temperature treatment. PLoS One 9:e92923. https://doi.org/10.1371/journal.pone.0092923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dobrzynski H, Anderson RH, Atkinson A, Borbas Z, D'Souza A, Fraser JF, Inada S, Logantha SJ, Monfredi O, Morris GM, Moorman AF, Nikolaidou T, Schneider H, Szuts V, Temple IP, Yanni J, Boyett MR (2013) Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther 139:260–288. https://doi.org/10.1016/j.pharmthera.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  12. Hancox JC, Levi AJ, Lee CO, Heap P (1993) A method for isolating rabbit atrioventricular node myocytes which retain normal morphology and function. The American journal of physiology 265:H755–H766. https://doi.org/10.1152/ajpheart.1993.265.2.H755

    Article  CAS  PubMed  Google Scholar 

  13. Harmati G, Bányász T, Bárándi L, Szentandrássy N, Horváth B, Szabó G, Szentmiklósi JA, Szénási G, Nánási PP, Magyar J (2011) Effects of β-adrenoceptor stimulation on delayed rectifier K(+) currents in canine ventricular cardiomyocytes. Br J Pharmacol 162:890–896. https://doi.org/10.1111/j.1476-5381.2010.01092.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heath BM, Terrar DA (1996) The deactivation kinetics of the delayed rectifier components IKr and IKs in guinea-pig isolated ventricular myocytes. Exp Physiol 81:605–621. https://doi.org/10.1113/expphysiol.1996.sp003962

    Article  CAS  PubMed  Google Scholar 

  15. Heath BM, Terrar DA (2000) Protein kinase C enhances the rapidly activating delayed rectifier potassium current, IKr, through a reduction in C-type inactivation in guinea-pig ventricular myocytes. J Physiol 522(Pt 3):391–402. https://doi.org/10.1111/j.1469-7793.2000.t01-2-00391.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Howarth FC, Levi AJ, Hancox JC (1996) Characteristics of the delayed rectifier K current compared in myocytes isolated from the atrioventricular node and ventricle of the rabbit heart. Pflugers Arch - Eur J Physiol 431:713–722. https://doi.org/10.1007/bf02253834

    Article  CAS  Google Scholar 

  17. Jones DK, Liu F, Vaidyanathan R, Eckhardt LL, Trudeau MC, Robertson GA (2014) hERG 1b is critical for human cardiac repolarization. Proc Natl Acad Sci U S A 111:18073–18077. https://doi.org/10.1073/pnas.1414945111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karle CA, Zitron E, Zhang W, Kathöfer S, Schoels W, Kiehn J (2002) Rapid component I(Kr) of the guinea-pig cardiac delayed rectifier K(+) current is inhibited by beta(1)-adrenoreceptor activation, via cAMP/protein kinase A-dependent pathways. Cardiovasc Res 53:355–362. https://doi.org/10.1016/s0008-6363(01)00509-0

    Article  CAS  PubMed  Google Scholar 

  19. Kojima A, Ito Y, Kitagawa H, Matsuura H (2015) Ionic mechanisms underlying the negative chronotropic action of propofol on sinoatrial node automaticity in guinea pig heart. Br J Pharmacol 172:799–814. https://doi.org/10.1111/bph.12936

    Article  CAS  PubMed  Google Scholar 

  20. Kojima A, Kitagawa H, Omatsu-Kanbe M, Matsuura H, Nosaka S (2012) Inhibitory effects of sevoflurane on pacemaking activity of sinoatrial node cells in guinea-pig heart. Br J Pharmacol 166:2117–2135. https://doi.org/10.1111/j.1476-5381.2012.01914.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee SY, Kim YJ, Kim KT, Choe H, Jo SH (2006) Blockade of HERG human K+ channels and IKr of guinea-pig cardiomyocytes by the antipsychotic drug clozapine. Br J Pharmacol 148:499–509. https://doi.org/10.1038/sj.bjp.0706744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li GR, Feng J, Yue L, Carrier M, Nattel S (1996) Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res 78:689–696. https://doi.org/10.1161/01.res.78.4.689

    Article  CAS  PubMed  Google Scholar 

  23. Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76:351–365. https://doi.org/10.1161/01.res.76.3.351

    Article  CAS  PubMed  Google Scholar 

  24. Mangoni ME, Couette B, Marger L, Bourinet E, Striessnig J, Nargeot J (2006) Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes. Prog Biophys Mol Biol 90:38–63. https://doi.org/10.1016/j.pbiomolbio.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  25. Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982. https://doi.org/10.1152/physrev.00018.2007

    Article  CAS  PubMed  Google Scholar 

  26. Marger L, Mesirca P, Alig J, Torrente A, Dubel S, Engeland B, Kanani S, Fontanaud P, Striessnig J, Shin HS, Isbrandt D, Ehmke H, Nargeot J, Mangoni ME (2011) Pacemaker activity and ionic currents in mouse atrioventricular node cells. Channels (Austin, Tex) 5:241–250. https://doi.org/10.4161/chan.5.3.15264

    Article  CAS  Google Scholar 

  27. Matsuura H, Ehara T, Ding WG, Omatsu-Kanbe M, Isono T (2002) Rapidly and slowly activating components of delayed rectifier K(+) current in guinea-pig sino-atrial node pacemaker cells. J Physiol 540:815–830. https://doi.org/10.1113/jphysiol.2001.016741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mitcheson JS, Hancox JC (1999) An investigation of the role played by the E-4031-sensitive (rapid delayed rectifier) potassium current in isolated rabbit atrioventricular nodal and ventricular myocytes. Pflugers Arch - Eur J Physiol 438:843–850. https://doi.org/10.1007/s004249900118

    Article  CAS  Google Scholar 

  29. Munk AA, Adjemian RA, Zhao J, Ogbaghebriel A, Shrier A (1996) Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J Physiol 493(Pt 3):801–818. https://doi.org/10.1113/jphysiol.1996.sp021424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Hurst V, Karp NA, Lazic SE, Lidster K, CJ MC, Macleod M et al (2020) Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 18:e3000411. https://doi.org/10.1371/journal.pbio.3000411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roybal D, Hennessey JA, Marx SO (2020) The quest to identify the mechanism underlying adrenergic regulation of cardiac Ca(2+) channels. Channels (Austin, Tex) 14:123–131. https://doi.org/10.1080/19336950.2020.1740502

    Article  Google Scholar 

  32. Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215. https://doi.org/10.1085/jgp.96.1.195

    Article  CAS  PubMed  Google Scholar 

  33. Sanguinetti MC, Jurkiewicz NK (1991) Delayed rectifier outward K+ current is composed of two currents in guinea pig atrial cells. Am J Physiol 260:H393–H399. https://doi.org/10.1152/ajpheart.1991.260.2.H393

    Article  CAS  PubMed  Google Scholar 

  34. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK (1991) Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circ Res 68:77–84. https://doi.org/10.1161/01.res.68.1.77

    Article  CAS  PubMed  Google Scholar 

  35. Schram G, Pourrier M, Melnyk P, Nattel S (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90:939–950. https://doi.org/10.1161/01.res.0000018627.89528.6f

    Article  CAS  PubMed  Google Scholar 

  36. Sherf L, James TN, Woods WT (1985) Function of the atrioventricular node considered on the basis of observed histology and fine structure. J Am Coll Cardiol 5:770–780. https://doi.org/10.1016/s0735-1097(85)80411-3

    Article  CAS  PubMed  Google Scholar 

  37. Si M, Xu J, Zhang F, Wang C, Du X, Zhang H (2013) Involvement of protein kinase A and C in norepinephrine- and angiotensin II-induced modulation of cardiac IKs. Pharmacology 92:217–226. https://doi.org/10.1159/000354881

    Article  CAS  PubMed  Google Scholar 

  38. Terrenoire C, Clancy CE, Cormier JW, Sampson KJ, Kass RS (2005) Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation. Circ Res 96:e25–e34. https://doi.org/10.1161/01.RES.0000160555.58046.9a

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Xu D, Wu TT, Guo Y, Chen YH, Zou JG (2014) β1-adrenergic regulation of rapid component of delayed rectifier K+ currents in guinea-pig cardiac myocytes. Mol Med Rep 9:1923–1928. https://doi.org/10.3892/mmr.2014.2035

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe Y, Dreifus LS (1968) Sites of impulse formation within the atrioventricular junction of the rabbit. Circ Res 22:717–727. https://doi.org/10.1161/01.res.22.6.717

    Article  CAS  PubMed  Google Scholar 

  41. Xie Y, Ding WG, Matsuura H (2015) Ca2+/calmodulin potentiates I Ks in sinoatrial node cells by activating Ca2+/calmodulin-dependent protein kinase II. Pflugers Arch - Eur J Physiol 467:241–251. https://doi.org/10.1007/s00424-014-1507-1

    Article  CAS  Google Scholar 

  42. Yuill KH, Hancox JC (2002) Characteristics of single cells isolated from the atrioventricular node of the adult guinea-pig heart. Pflugers Arch - Eur J Physiol 445:311–320. https://doi.org/10.1007/s00424-002-0932-8

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Japan Society for the Promotion of Science (Tokyo, Japan) KAKENHI Grant Numbers 17K11050 (to Akiko Kojima) and 17K08536 (to Hiroshi Matsuura).

Author information

Authors and Affiliations

Authors

Contributions

MY and HM participated in the research design; MY, XM, MO, and HM conducted the experiments; MY, AK, HK, W-GD, and HM performed the data analysis; and MY, W-GD, AK, and HM wrote the manuscript. All authors revised the final version of the manuscript and approved its submission.

Corresponding author

Correspondence to Wei-Guang Ding.

Ethics declarations

Ethics approval

All animal care and experimental procedures were conducted in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996) and were approved by the institution’s Animal Care and Use Committee of Shiga University of Medical Science. The studies involving animals were reported in accordance with the ARRIVE guidelines for reporting experiments involving animals [30].

Conflicts of interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Figure 1

The effects of the sequential application of HMR-1556, E4031 and a mixture of HMR-1556 and E4031 on AV node automaticity under basal or β-adrenoceptor-activated conditions in one series of experiments. a Action potentials recorded under basal conditions (1), and the application of 1 μM HMR-1556 (2), HMR-1556 washout (3), the application of 5 μM E4031 (4), a mixture of E4031 and HMR-1556 (5) under basal conditions. b Summarized data for the reduction in the firing rate induced by E4031, HMR-1556 and by a mixture of E4031 and HMR-1556, under basal conditions (n = 11, N = 6). *, P < 0.05 in comparison to control. c Action potentials recorded under the application of 0.01 μM isoproterenol (6), and the application of 1 μM HMR-1556 (7), HMR-1556 washout (8), 5 μM E4031 (9), a mixture of E4031 and HMR-1556 (10), under β-adrenoceptor-activated conditions. d Summarized data for the reduction in the firing rate induced by E4031, HMR-1556 and by a mixture of E4031 and HMR-1556 in the presence of isoproterenol (n = 16, N = 7). *, P < 0.05 in comparison to the application of isoproterenol alone. (PNG 713 kb)

High resolution image (TIF 2060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuasa, M., Kojima, A., Mi, X. et al. Characterization and functional role of rapid- and slow-activating delayed rectifier K+ currents in atrioventricular node cells of guinea pigs. Pflugers Arch - Eur J Physiol 473, 1885–1898 (2021). https://doi.org/10.1007/s00424-021-02617-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02617-z

Keywords

Navigation