Skip to main content

Advertisement

Log in

An alternative pathway for sweet sensation: possible mechanisms and physiological relevance

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Sweet substances are detected by taste-bud cells upon binding to the sweet-taste receptor, a T1R2/T1R3 heterodimeric G protein-coupled receptor. In addition, experiments with mouse models lacking the sweet-taste receptor or its downstream signaling components led to the proposal of a parallel “alternative pathway” that may serve as metabolic sensor and energy regulator. Indeed, these mice showed residual nerve responses and behavioral attraction to sugars and oligosaccharides but not to artificial sweeteners. In analogy to pancreatic β cells, such alternative mechanism, to sense glucose in sweet-sensitive taste cells, might involve glucose transporters and KATP channels. Their activation may induce depolarization-dependent Ca2+ signals and release of GLP-1, which binds to its receptors on intragemmal nerve fibers. Via unknown neuronal and/or endocrine mechanisms, this pathway may contribute to both, behavioral attraction and/or induction of cephalic-phase insulin release upon oral sweet stimulation. Here, we critically review the evidence for a parallel sweet-sensitive pathway, involved signaling mechanisms, neural processing, interactions with endocrine hormonal mechanisms, and its sensitivity to different stimuli. Finally, we propose its physiological role in detecting the energy content of food and preparing for digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CPIR:

Cephalic-phase insulin release

DMNX:

Dorsal motor nucleus of vagus nerve

GLP-1:

Glucagon-like peptide-1

GLUT:

Glucose -transporter

IP3:

Inositol triphosphate

KATP :

ATP-sensitive K+ channels

NTS:

Nucleus of the solitary tract

PLCβ2:

Phospholipase-Cβ2

SGLT:

Sodium/glucose cotransporter

T1R1:

Taste receptor type 1 member 1

T1R2:

Taste receptor type 1 member 2

T1R3:

Taste receptor type 1 member 3

TRPM5:

Membrane-associated transient receptor potential channel subfamily M member 5

VDCCs:

Voltage-dependent calcium channels

VRAC:

Volume-regulated anion channel

References

  1. Abaffy T, Trubey KR, Chaudhari N (2003) Adenylyl cyclase expression and modulation of cAMP in rat taste cells. Am J Phys Cell Phys 284:C1420–C1428. https://doi.org/10.1152/ajpcell.00556.2002

    Article  CAS  Google Scholar 

  2. Abdallah L, Chabert M, Louis-Sylvestre J (1997) Cephalic phase responses to sweet taste. Am J Clin Nutr 65:737–743. https://doi.org/10.1093/ajcn/65.3.737

    Article  CAS  PubMed  Google Scholar 

  3. Ahrén B, Holst JJ (2001) The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes 50:1030–1038. https://doi.org/10.2337/diabetes.50.5.1030

    Article  PubMed  Google Scholar 

  4. Aihara E, Mahe MM, Schumacher MA et al (2015) Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid. Sci Rep 5:17185. https://doi.org/10.1038/srep17185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andersen CA, Kring ML, Andersen RH et al (2019) EEG discrimination of perceptually similar tastes. J Neurosci Res 97:241–252. https://doi.org/10.1002/jnr.24281

    Article  CAS  PubMed  Google Scholar 

  6. Antenucci RG, Hayes JE (2015) Nonnutritive sweeteners are not supernormal stimuli. Int J Obes 39:254–259. https://doi.org/10.1038/ijo.2014.109

    Article  CAS  Google Scholar 

  7. de Araujo IE, Oliveira-Maia AJ, Sotnikova TD et al (2008) Food reward in the absence of taste receptor signaling. Neuron 57:930–941. https://doi.org/10.1016/j.neuron.2008.01.032

    Article  CAS  PubMed  Google Scholar 

  8. de Araujo IE, Schatzker M, Small DM (2020) Rethinking food reward. Annu Rev Psychol 71:139–164. https://doi.org/10.1146/annurev-psych-122216-011643

    Article  PubMed  Google Scholar 

  9. Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115:2047–2058. https://doi.org/10.1172/JCI25495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ashcroft FM, Harrison DE, Ashcroft SJH (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312:446–448

    Article  CAS  Google Scholar 

  11. Assadi-Porter FM, Maillet EL, Radek JT et al (2010) Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. J Mol Biol 398:584–599. https://doi.org/10.1016/j.jmb.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ast J, Arvaniti A, Fine NHF et al (2020) Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nat Commun 11:467. https://doi.org/10.1038/s41467-020-14309-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Avena NM, Rada P, Hoebel BG (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32:20–39. https://doi.org/10.1016/j.neubiorev.2007.04.019

    Article  CAS  PubMed  Google Scholar 

  14. Bachmanov AA, Li X, Reed DR et al (2001) Positional cloning of the mouse saccharin preference (Sac) locus. Chem Senses 26:925–933. https://doi.org/10.1093/chemse/26.7.925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barlow LA (2015) Progress and renewal in gustation. New insights into taste bud development. Development 142:3620–3629. https://doi.org/10.1242/dev.120394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bauer S, Wennberg Huldt C, Kanebratt KP et al (2017) Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci Rep 7:14620. https://doi.org/10.1038/s41598-017-14815-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Behrens M, Meyerhof W (2010) Oral and extraoral bitter taste receptors. Results Probl Cell Differ 52:87–99. https://doi.org/10.1007/978-3-642-14426-4_8

    Article  CAS  PubMed  Google Scholar 

  18. Bein A, Shin W, Jalili-Firoozinezhad S et al. (2018) Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol 5:659–668. doi: https://doi.org/10.1016/j.jcmgh.2017.12.010

  19. Bellisle F, Louis-Sylvestre J, Demozay F et al (1985) Cephalic phase of insulin secretion and food stimulation in humans: a new perspective. Am J Phys 249:E639–E645. https://doi.org/10.1152/ajpendo.1985.249.6.E639

    Article  CAS  Google Scholar 

  20. Bernhardt SJ, Naim M, Zehavi U et al (1996) Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J Physiol Lond 490(Pt 2):325–336. https://doi.org/10.1113/jphysiol.1996.sp021147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berridge K, Grill HJ, Norgren R (1981) Relation of consummatory responses and preabsorptive insulin release to palatability and learned taste aversions. J Comp Physiol Psychol 95:363–382. https://doi.org/10.1037/h0077782

    Article  CAS  PubMed  Google Scholar 

  22. Berthoud HR, Trimble ER, Siegel EG et al (1980) Cephalic-phase insulin secretion in normal and pancreatic islet-transplanted rats. Am J Phys 238:E336–E340. https://doi.org/10.1152/ajpendo.1980.238.4.E336

    Article  CAS  Google Scholar 

  23. Berthoud HR, Bereiter DA, Trimble ER et al (1981) Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization. Diabetologia 20(Suppl):393–401

    Article  CAS  Google Scholar 

  24. Besnard P, Passilly-Degrace P, Khan NA (2016) Taste of fat. A sixth taste modality? Physiol Rev 96:151–176. https://doi.org/10.1152/physrev.00002.2015

    Article  CAS  PubMed  Google Scholar 

  25. Best L, Brown PD, Sener A et al (2010) Electrical activity in pancreatic islet cells: the VRAC hypothesis. Islets 2:59–64. https://doi.org/10.4161/isl.2.2.11171

    Article  PubMed  Google Scholar 

  26. Bezençon C, Le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32:41–49. https://doi.org/10.1093/chemse/bjl034

    Article  PubMed  Google Scholar 

  27. Bittner CX, Loaiza A, Ruminot I et al (2010) High resolution measurement of the glycolytic rate. Front Neuroenerg 2. https://doi.org/10.3389/fnene.2010.00026

  28. Boel A, Burger J, Vanhomwegen M et al. (2019) SLC2A knockout mice deficient in ascorbic acid synthesis recapitulate aspects of arterial tortuosity syndrome and display mitochondrial respiration defects, vol 228

  29. Borges MC, Louzada ML, de Sá TH et al (2017) Artificially sweetened beverages and the response to the global obesity crisis. PLoS Med 14:e1002195. https://doi.org/10.1371/journal.pmed.1002195

    Article  PubMed  PubMed Central  Google Scholar 

  30. Boucher Y, Simons CT, Faurion A et al (2003) Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res 973:265–274. https://doi.org/10.1016/s0006-8993(03)02526-5

    Article  CAS  PubMed  Google Scholar 

  31. Bradley RM (2007) The role of the nucleus of the solitary tract in gustatory processing. In: Frontiers in neuroscience. CRC Press, Boca Raton

    Google Scholar 

  32. Bray GA, Popkin BM (2014) Dietary sugar and body weight. Have we reached a crisis in the epidemic of obesity and diabetes?: health be damned! Pour on the sugar. Diabetes Care 37:950–956. https://doi.org/10.2337/dc13-2085

    Article  CAS  PubMed  Google Scholar 

  33. Brown RJ, Walter M, Rother KI (2009) Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care 32:2184–2186. https://doi.org/10.2337/dc09-1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown RJ, Walter M, Rother KI (2012) Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care 35:959–964. https://doi.org/10.2337/dc11-2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brubaker PL (2017) Species-dependent mechanisms regulating glucose-dependent GLP-1 secretion? Diabetes 66:2063–2065. https://doi.org/10.2337/dbi17-0020

    Article  CAS  PubMed  Google Scholar 

  36. Bruce DG, Storlien LH, Furler SM et al (1987) Cephalic phase metabolic responses in normal weight adults. Metab Clin Exp 36:721–725. https://doi.org/10.1016/0026-0495(87)90106-5

    Article  CAS  PubMed  Google Scholar 

  37. Calviño AM (1986) Perception of sweetness: the effects of concentration and temperature. Physiol Behav 36:1021–1028. https://doi.org/10.1016/0031-9384(86)90474-9

    Article  PubMed  Google Scholar 

  38. Calvo SS-C, Egan JM (2015) The endocrinology of taste receptors. Nat Rev Endocrinol 11:213–227. https://doi.org/10.1038/nrendo.2015.7

    Article  CAS  PubMed  Google Scholar 

  39. Campos RV, Lee YC, Drucker DJ (1994) Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134:2156–2164. https://doi.org/10.1210/endo.134.5.8156917

    Article  CAS  PubMed  Google Scholar 

  40. Chambers AP, Sorrell JE, Haller A et al (2017) The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metab 25:927–934.e3. https://doi.org/10.1016/j.cmet.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chambers ES, Bridge MW, Jones DA (2009) Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol Lond 587:1779–1794. https://doi.org/10.1113/jphysiol.2008.164285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chamoun E, Carroll NA, Duizer LM et al. (2018) The relationship between single nucleotide polymorphisms in taste receptor genes, taste function and dietary intake in preschool-aged children and adults in the Guelph family health study. Nutrients 10. doi: https://doi.org/10.3390/nu10080990

  43. Chandrashekar J, Hoon MA, Ryba NJP et al (2006) The receptors and cells for mammalian taste. Nature 444:288–294. https://doi.org/10.1038/nature05401

    Article  CAS  PubMed  Google Scholar 

  44. Chattopadhyay S, Raychaudhuri U, Chakraborty R (2014) Artificial sweeteners - a review. J Food Sci Technol 51:611–621. https://doi.org/10.1007/s13197-011-0571-1

    Article  CAS  PubMed  Google Scholar 

  45. Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296. https://doi.org/10.1083/jcb.201003144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chéron J-B, Golebiowski J, Antonczak S et al (2017) The anatomy of mammalian sweet taste receptors. Proteins 85:332–341. https://doi.org/10.1002/prot.25228

    Article  CAS  PubMed  Google Scholar 

  47. Choi M, Lee WM, Yun SH (2015) Intravital microscopic interrogation of peripheral taste sensation. Sci Rep 5:8661. https://doi.org/10.1038/srep08661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clapp TR, Stone LM, Margolskee RF et al (2001) Immunocytochemical evidence for co-expression of Type III IP3receptor with signaling components of bitter taste transduction. BMC Neurosci 2:6. https://doi.org/10.1186/1471-2202-2-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clapp TR, Yang R, Stoick CL et al (2004) Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J Comp Neurol 468:311–321. https://doi.org/10.1002/cne.10963

    Article  CAS  PubMed  Google Scholar 

  50. Clapp TR, Medler KF, Damak S et al (2006) Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol 4:7. https://doi.org/10.1186/1741-7007-4-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clapp TR, Trubey KR, Vandenbeuch A et al (2008) Tonic activity of Galpha-gustducin regulates taste cell responsivity. FEBS Lett 582:3783–3787. https://doi.org/10.1016/j.febslet.2008.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Colvin JL, Pullicin AJ, Lim J (2018) Regional differences in taste responsiveness: effect of stimulus and tasting mode. Chem Senses 43:645–653

    Article  CAS  Google Scholar 

  53. Corson JA, Erisir A (2013) Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: a high-resolution confocal and correlative electron microscopy approach. J Comp Neurol 521:2907–2926. https://doi.org/10.1002/cne.23357

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cui M, Jiang P, Maillet E et al (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12:4591–4600. https://doi.org/10.2174/138161206779010350

    Article  CAS  PubMed  Google Scholar 

  55. D'Alessio DA, Kieffer TJ, Taborsky GJ et al (2001) Activation of the parasympathetic nervous system is necessary for normal meal-induced insulin secretion in rhesus macaques. J Clin Endocrinol Metab 86:1253–1259. https://doi.org/10.1210/jcem.86.3.7367

    Article  CAS  PubMed  Google Scholar 

  56. Damak S, Rong M, Yasumatsu K et al (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301:850–853. https://doi.org/10.1126/science.1087155

    Article  CAS  PubMed  Google Scholar 

  57. Damak S, Rong M, Yasumatsu K et al (2006) Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 31:253–264. https://doi.org/10.1093/chemse/bjj027

    Article  CAS  PubMed  Google Scholar 

  58. Dando R, Pereira E, Kurian M et al. (2015) A permeability barrier surrounds taste buds in lingual epithelia. Am J Physiol , Cell Physiol 308:C21-C32. doi: https://doi.org/10.1152/ajpcell.00157.2014

  59. Daniel H, Zietek T (2015) Taste and move: glucose and peptide transporters in the gastrointestinal tract. Exp Physiol 100:1441–1450. https://doi.org/10.1113/EP085029

    Article  CAS  PubMed  Google Scholar 

  60. Danilova V, Hellekant G (2003) Comparison of the responses of the chorda tympani and glossopharyngeal nerves to taste stimuli in C57BL/6J mice. BMC Neurosci 4:5. https://doi.org/10.1186/1471-2202-4-5

    Article  PubMed  PubMed Central  Google Scholar 

  61. Danilova V, Damak S, Margolskee RF et al (2006) Taste responses to sweet stimuli in alpha-gustducin knockout and wild-type mice. Chem Senses 31:573–580. https://doi.org/10.1093/chemse/bjj062

    Article  CAS  PubMed  Google Scholar 

  62. Davis EM, Sandoval DA (2020) Glucagon-like peptide-1: actions and influence on pancreatic hormone function. Compr Physiol 10:577–595. doi: https://doi.org/10.1002/cphy.c190025

  63. Deacon CF, Nauck MA, Toft-Nielsen M et al (1995) Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 44:1126–1131. https://doi.org/10.2337/diab.44.9.1126

    Article  CAS  PubMed  Google Scholar 

  64. DeFazio RA, Dvoryanchikov G, Maruyama Y et al (2006) Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci 26:3971–3980. https://doi.org/10.1523/JNEUROSCI.0515-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Delay ER, Hernandez NP, Bromley K et al (2006) Sucrose and monosodium glutamate taste thresholds and discrimination ability of T1R3 knockout mice. Chem Senses 31:351–357. https://doi.org/10.1093/chemse/bjj039

    Article  CAS  PubMed  Google Scholar 

  66. Delhanty PJD, van der Lely AJ (2014) How gut and brain control metabolism. Frontiers of Hormone Research. S. Karger AG

    Book  Google Scholar 

  67. Deng D, Yan N (2016) GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Sci 25:546–558. https://doi.org/10.1002/pro.2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Deuschle K, Okumoto S, Fehr M et al (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314. https://doi.org/10.1110/ps.051508105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dhillon J, Lee JY, Mattes RD (2017) The cephalic phase insulin response to nutritive and low-calorie sweeteners in solid and beverage form. Physiol Behav 181:100–109. https://doi.org/10.1016/j.physbeh.2017.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Di Pizio A, Ben Shoshan-Galeczki Y, Hayes JE et al (2019) Bitter and sweet tasting molecules: It's complicated. Neurosci Lett 700:56–63. https://doi.org/10.1016/j.neulet.2018.04.027

    Article  CAS  PubMed  Google Scholar 

  71. Dotson CD, Roper SD, Spector AC (2005) PLCbeta2-independent behavioral avoidance of prototypical bitter-tasting ligands. Chem Senses 30:593–600. https://doi.org/10.1093/chemse/bji053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dotson CD, Geraedts MCP, Munger SD (2013) Peptide regulators of peripheral taste function. Semin Cell Dev Biol 24:232–239. https://doi.org/10.1016/j.semcdb.2013.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Doyle ME, Fiori JL, Gonzalez Mariscal I et al (2018) Insulin is transcribed and translated in mammalian taste bud cells. Endocrinology 159:3331–3339. https://doi.org/10.1210/en.2018-00534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. DuBois GE (2016) Molecular mechanism of sweetness sensation. Physiol Behav 164:453–463. https://doi.org/10.1016/j.physbeh.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  75. DuBois GE, Prakash I (2012) Non-caloric sweeteners, sweetness modulators, and sweetener enhancers. Annu Rev Food Sci Technol 3:353–380. https://doi.org/10.1146/annurev-food-022811-101236

    Article  CAS  PubMed  Google Scholar 

  76. DuBois GE, Orthoefer FT, Walters DE (1991) Sweeteners: discovery, molecular design, and chemoreception: developed from a symposium sponsored by the division of agricultural and food chemistry at the 199th National Meeting of the American Chemical Society, Boston, Massachusetts, April 22-27, 1990. American Chemical Society

  77. Dušková M, Macourek M, Šrámková M et al (2013) The role of taste in cephalic phase of insulin secretion. Prague Med Rep 114:222–230. https://doi.org/10.14712/23362936.2014.11

    Article  PubMed  Google Scholar 

  78. Dutta Banik D, Martin LE, Freichel M et al (2018) TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc Natl Acad Sci U S A 115:E772–E781. https://doi.org/10.1073/pnas.1718802115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dyer J, Salmon KSH, Zibrik L et al (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302–305. https://doi.org/10.1042/BST0330302

    Article  CAS  PubMed  Google Scholar 

  80. Eddy MC, Eschle BK, Barrows J et al (2009) Double P2X2/P2X3 purinergic receptor knockout mice do not taste NaCl or the artificial sweetener SC45647. Chem Senses 34:789–797. https://doi.org/10.1093/chemse/bjp068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eddy MC, Eschle BK, Peterson D et al (2012) A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice. Chem Senses 37:391–401. https://doi.org/10.1093/chemse/bjr093

    Article  CAS  PubMed  Google Scholar 

  82. Elliott RA, Kapoor S, Tincello DG (2011) Expression and distribution of the sweet taste receptor isoforms T1R2 and T1R3 in human and rat bladders. J Urol 186:2455–2462. https://doi.org/10.1016/j.juro.2011.07.083

    Article  CAS  PubMed  Google Scholar 

  83. Elrick H, Stimmler L, Hand CJ et al (1964) Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 24:1076–1082. https://doi.org/10.1210/jcem-24-10-1076

    Article  CAS  PubMed  Google Scholar 

  84. Elson AET, Dotson CD, Egan JM et al (2010) Glucagon signaling modulates sweet taste responsiveness. FASEB J 24:3960–3969. https://doi.org/10.1096/fj.10-158105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eriksson L, Esberg A, Haworth S et al. (2019) Allelic variation in taste genes is associated with taste and diet preferences and dental caries. Nutrients 11. doi: https://doi.org/10.3390/nu11071491

  86. Fehr M, Takanaga H, Ehrhardt DW et al (2005) Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Mol Cell Biol 25:11102–11112. https://doi.org/10.1128/MCB.25.24.11102-11112.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Feldman M, Richardson CT (1986) Role of thought, sight, smell, and taste of food in the cephalic phase of gastric acid secretion in humans. Gastroenterology 90:428–433. https://doi.org/10.1016/0016-5085(86)90943-1

    Article  CAS  PubMed  Google Scholar 

  88. Feng X-H, Liu X-M, Zhou L-H et al (2008) Expression of glucagon-like peptide-1 in the taste buds of rat circumvallate papillae. Acta Histochem 110:151–154. https://doi.org/10.1016/j.acthis.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  89. Finger TE, Danilova V, Barrows J et al (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499. https://doi.org/10.1126/science.1118435

    Article  CAS  PubMed  Google Scholar 

  90. Fischer U, Hommel H, Ziegler M et al (1972) The mechanism of insulin secretion after oral glucose administration. I. Multiphasic course of insulin mobilization after oral administration of glucose in conscious dogs. Differences to the behaviour after intravenous administration. Diabetologia 8:104–110. https://doi.org/10.1007/bf01235634

    Article  CAS  PubMed  Google Scholar 

  91. Ford HE, Peters V, Martin NM et al (2011) Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur J Clin Nutr 65:508–513. https://doi.org/10.1038/ejcn.2010.291

    Article  CAS  PubMed  Google Scholar 

  92. Frank ME, Contreras RJ, Hettinger TP (1983) Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat. J Neurophysiol 50:941–960. https://doi.org/10.1152/jn.1983.50.4.941

    Article  CAS  PubMed  Google Scholar 

  93. Frank GKW, Oberndorfer TA, Simmons AN et al (2008) Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage 39:1559–1569. https://doi.org/10.1016/j.neuroimage.2007.10.061

    Article  PubMed  Google Scholar 

  94. Ganchrow D, Ganchrow JR, Cicchini V et al (2014) Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections. J Comp Neurol 522:1565–1596. https://doi.org/10.1002/cne.23484

    Article  PubMed  Google Scholar 

  95. Geraedts MCP, Takahashi T, Vigues S et al (2012) Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. Am J Physiol Endocrinol Metab 303:E464–E474. https://doi.org/10.1152/ajpendo.00163.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gilbertson TA (2002) Hypoosmotic stimuli activate a chloride conductance in rat taste cells. Chem Senses 27:383–394. https://doi.org/10.1093/chemse/27.4.383

    Article  CAS  PubMed  Google Scholar 

  97. Giza BK, Scott TR, Sclafani A et al (1991) Polysaccharides as taste stimuli: their effect in the nucleus tractus solitarius of the rat. Brain Res 555:1–9. https://doi.org/10.1016/0006-8993(91)90852-m

    Article  CAS  PubMed  Google Scholar 

  98. Glendinning JI (2018) Oral post-oral actions of low-calorie sweeteners: a tale of contradictions and controversies. Obesity (Silver Spring) 26(Suppl 3):S9–S17. https://doi.org/10.1002/oby.22253

    Article  Google Scholar 

  99. Glendinning JI, Bloom LD, Onishi M et al (2005) Contribution of alpha-gustducin to taste-guided licking responses of mice. Chem Senses 30:299–316. https://doi.org/10.1093/chemse/bji025

    Article  CAS  PubMed  Google Scholar 

  100. Glendinning JI, Stano S, Holter M et al (2015) Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. Am J Phys Regul Integr Comp Phys 309:R552–R560. https://doi.org/10.1152/ajpregu.00056.2015

    Article  CAS  Google Scholar 

  101. Glendinning JI, Frim YG, Hochman A et al (2017) Glucose elicits cephalic-phase insulin release in mice by activating KATP channels in taste cells. Am J Phys Regul Integr Comp Phys 312:R597–R610. https://doi.org/10.1152/ajpregu.00433.2016

    Article  Google Scholar 

  102. Glendinning JI, Maleh J, Ortiz G et al (2020) Olfaction contributes to the learned avidity for glucose relative to fructose in mice. Am J Phys Regul Integr Comp Phys 318:R901–R916. https://doi.org/10.1152/ajpregu.00340.2019

    Article  CAS  Google Scholar 

  103. Goke R (1995) Larsen PJ, Mikkelsen JD, Sheikh SP. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 7:2294–2300

    Article  CAS  Google Scholar 

  104. Gong T, Wei Q, Mao D et al (2016) Expression patterns of taste receptor type 1 subunit 3 and α-gustducin in the mouse testis during development. Acta Histochem 118:20–30. https://doi.org/10.1016/j.acthis.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  105. Gorboulev V, Schürmann A, Vallon V et al (2011) Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61:187–196. https://doi.org/10.2337/db11-1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gregersen S, Jeppesen PB, Holst JJ et al (2004) Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53:73–76. https://doi.org/10.1016/j.metabol.2003.07.013

    Article  CAS  PubMed  Google Scholar 

  107. Gribble FM, Williams L, Simpson AK et al (2003) A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 52:1147–1154. https://doi.org/10.2337/diabetes.52.5.1147

    Article  CAS  PubMed  Google Scholar 

  108. Grill HJ, Berridge KC, Ganster DJ (1984) Oral glucose is the prime elicitor of preabsorptive insulin secretion. Am J Phys 246:R88–R95. https://doi.org/10.1152/ajpregu.1984.246.1.R88

    Article  CAS  Google Scholar 

  109. Guo YS, Singh P, Gomez G et al (1987) Effect of peptide YY on cephalic, gastric, and intestinal phases of gastric acid secretion and on the release of gastrointestinal hormones. Gastroenterology 92:1202–1208. https://doi.org/10.1016/s0016-5085(87)91078-x

    Article  CAS  PubMed  Google Scholar 

  110. Gutierrez R, Simon SA (2011) Chemosensory processing in the taste - reward pathway. Flavour Fragr J 26:231–238. https://doi.org/10.1002/ffj.2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Habib AM, Richards P, Rogers GJ et al (2013) Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia 56:1413–1416. https://doi.org/10.1007/s00125-013-2887-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hacker K, Medler KF (2008) Mitochondrial calcium buffering contributes to the maintenance of Basal calcium levels in mouse taste cells. J Neurophysiol 100:2177–2191. https://doi.org/10.1152/jn.90534.2008

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hallock RM, Tatangelo M, Barrows J et al (2009) Residual chemosensory capabilities in double P2X2/P2X3 purinergic receptor null mice: intraoral or postingestive detection? Chem Senses 34:799–808. https://doi.org/10.1093/chemse/bjp069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hamamichi R, Asano-Miyoshi M, Emori Y (2006) Taste bud contains both short-lived and long-lived cell populations. Neuroscience 141:2129–2138. https://doi.org/10.1016/j.neuroscience.2006.05.061

    Article  CAS  PubMed  Google Scholar 

  115. Han P, Bagenna B, Fu M (2019) The sweet taste signalling pathways in the oral cavity and the gastrointestinal tract affect human appetite and food intake: a review. Int J Food Sci Nutr 70:125–135. https://doi.org/10.1080/09637486.2018.1492522

    Article  CAS  PubMed  Google Scholar 

  116. Hansen L, Deacon CF, Orskov C et al (1999) Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140:5356–5363. https://doi.org/10.1210/endo.140.11.7143

    Article  CAS  PubMed  Google Scholar 

  117. Härtel B, Graubaum H, Schneider B (1993) The influence of sweetener solutions on the secretion of insulin and the blood glucose level. Ernährungsumschau 40:152–155

    Google Scholar 

  118. He W, Danilova V, Zou S et al (2002) Partial rescue of taste responses of alpha-gustducin null mice by transgenic expression of alpha-transducin. Chem Senses 27:719–727. https://doi.org/10.1093/chemse/27.8.719

    Article  CAS  PubMed  Google Scholar 

  119. Herness S, F-l Z, Lu S-g et al (2002) Expression and physiological actions of cholecystokinin in rat taste receptor cells. J Neurosci 22:10018–10029. https://doi.org/10.1523/JNEUROSCI.22-22-10018.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hevezi P, Moyer BD, Lu M et al (2009) Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes. PLoS One 4:e6395. https://doi.org/10.1371/journal.pone.0006395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hochheimer A, Krohn M, Rudert K et al (2014) Endogenous gustatory responses and gene expression profile of stably proliferating human taste cells isolated from fungiform papillae. Chem Senses 39:359–377. https://doi.org/10.1093/chemse/bju009

    Article  CAS  PubMed  Google Scholar 

  122. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439. https://doi.org/10.1152/physrev.00034.2006

    Article  CAS  PubMed  Google Scholar 

  123. Hommel HH, Fischer U (1977) The mechanism of insulin secretion after oral glucose administration V. Portal venous IRI concentration in dogs after ingestion of glucose. Diabetologia 13:269–272. https://doi.org/10.1007/bf01219711

    Article  CAS  PubMed  Google Scholar 

  124. Hoon MA, Adler E, Lindemeier J et al (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551. https://doi.org/10.1016/S0092-8674(00)80658-3

    Article  CAS  PubMed  Google Scholar 

  125. Hopman WP, Jansen JB, Rosenbusch G et al (1987) Cephalic stimulation of gallbladder contraction in humans: role of cholecystokinin and the cholinergic system. Digestion 38:197–203. https://doi.org/10.1159/000199592

    Article  CAS  PubMed  Google Scholar 

  126. Huang L, Shanker YG, Dubauskaite J et al (1999) Ggamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 2:1055–1062. https://doi.org/10.1038/15981

    Article  CAS  PubMed  Google Scholar 

  127. Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5:237–252. https://doi.org/10.1016/j.cmet.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  128. Hwang PM, Verma A, Bredt DS et al (1990) Localization of phosphatidylinositol signaling components in rat taste cells. Role in bitter taste transduction. Proc Natl Acad Sci U S A 87:7395–7399. https://doi.org/10.1073/pnas.87.19.7395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Imoto T, Miyasaka A, Ishima R et al (1991) A novel peptide isolated from the leaves of Gymnema sylvestre—I. Characterization and its suppressive effect on the neural responses to sweet taste stimuli in the rat. Comp Biochem Physiol A Physiol 100:309–314. https://doi.org/10.1016/0300-9629(91)90475-R

    Article  CAS  Google Scholar 

  130. Inoue M, Glendinning JI, Theodorides ML et al (2007) Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice. Physiol Genomics 32:82–94. https://doi.org/10.1152/physiolgenomics.00161.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Izakovicova Holla L, Borilova Linhartova P, Lucanova S et al (2015) GLUT2 and TAS1R2 polymorphisms and susceptibility to dental caries. Caries Res 49:417–424. https://doi.org/10.1159/000430958

    Article  CAS  PubMed  Google Scholar 

  132. Jang H-J, Kokrashvili Z, Theodorakis MJ et al (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 104:15069–15074. https://doi.org/10.1073/pnas.0706890104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Glendinning JI, Lubitz GS, Shelling S (2018) Taste of glucose elicits cephalic-phase insulin release in mice. Physiol Behav 192:200–205. https://doi.org/10.1016/j.physbeh.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  134. Just T, Pau HW, Engel U et al (2008) Cephalic phase insulin release in healthy humans after taste stimulation? Appetite 51:622–627. https://doi.org/10.1016/j.appet.2008.04.271

    Article  CAS  PubMed  Google Scholar 

  135. Kalyanasundar B, Blonde GD, Spector AC et al (2020) Electrophysiological responses to sugars and amino acids in the nucleus of the solitary tract of type 1 taste receptor double-knockout mice. J Neurophysiol 123:843–859. https://doi.org/10.1152/jn.00584.2019

    Article  CAS  PubMed  Google Scholar 

  136. Kang C, Xie L, Gunasekar SK et al (2018) SWELL1 is a glucose sensor regulating β-cell excitability and systemic glycaemia. Nat Commun 9:367. https://doi.org/10.1038/s41467-017-02664-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Karimnamazi H, Travers SP, Travers JB (2002) Oral and gastric input to the parabrachial nucleus of the rat. Brain Res 957:193–206. https://doi.org/10.1016/S0006-8993(02)03438-8

    Article  CAS  PubMed  Google Scholar 

  138. Katschinski M (2000) Nutritional implications of cephalic phase gastrointestinal responses. Appetite 34:189–196. https://doi.org/10.1006/appe.1999.0280

    Article  CAS  PubMed  Google Scholar 

  139. Kibbey RG, Pongratz RL, Romanelli AJ et al (2007) Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab 5:253–264. https://doi.org/10.1016/j.cmet.2007.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kilimnik G, Kim A, Steiner DF et al (2010) Intraislet production of GLP-1 by activation of prohormone convertase 1/3 in pancreatic α-cells in mouse models of ß-cell regeneration. Islets 2:149–155. https://doi.org/10.4161/isl.2.3.11396

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kim M-R, Kusakabe Y, Miura H et al (2003) Regional expression patterns of taste receptors and gustducin in the mouse tongue. Biochem Biophys Res Commun 312:500–506. https://doi.org/10.1016/j.bbrc.2003.10.137

    Article  CAS  PubMed  Google Scholar 

  142. Kitagawa M, Kusakabe Y, Miura H et al (2001) Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun 283:236–242. https://doi.org/10.1006/bbrc.2001.4760

    Article  CAS  PubMed  Google Scholar 

  143. Koehler JA, Baggio LL, Cao X et al (2015) Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis. Diabetes 64:1046–1056. https://doi.org/10.2337/db14-0883

    Article  CAS  PubMed  Google Scholar 

  144. Kokrashvili Z, Mosinger B, Margolskee RF (2009) Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr 90:822S–825S. https://doi.org/10.3945/ajcn.2009.27462T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kokrashvili Z, Yee KK, Ilegems E et al (2014) Endocrine taste cells. Br J Nutr 111(Suppl 1):S23–S29. https://doi.org/10.1017/S0007114513002262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kolesnikov SS, Margolskee RF (1995) A cyclic-nucleotide-suppressible conductance activated by transducin in taste cells. Nature 376:85–88. https://doi.org/10.1038/376085a0

    Article  CAS  PubMed  Google Scholar 

  147. Krieger J-P, Arnold M, Pettersen KG et al (2016) Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia. Diabetes 65:34–43. https://doi.org/10.2337/db15-0973

    Article  CAS  PubMed  Google Scholar 

  148. Kuhre RE, Frost CR, Svendsen B et al (2015) Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 64:370–382. https://doi.org/10.2337/db14-0807

    Article  CAS  PubMed  Google Scholar 

  149. Kurihara K, Koyama N (1972) High activity of adenyl cyclase in olfactory and gustatory organs. Biochem Biophys Res Commun 48:30–34. https://doi.org/10.1016/0006-291X(72)90339-7

    Article  CAS  PubMed  Google Scholar 

  150. Kurosaki Y, Yano K, Kimura T (1998) Perfusion cells for studying regional variation in oral mucosal permeability in humans. 2. A specialized transport mechanism in D-glucose absorption exists in dorsum of tongue. J Pharm Sci 87:613–615. https://doi.org/10.1021/js9703028

    Article  CAS  PubMed  Google Scholar 

  151. Kusakabe Y, Yamaguchi E, Tanemura K et al (1998) Identification of two α-subunit species of GTP-binding proteins, Gα15 and Gαq, expressed in rat taste buds. Biochim Biophys Acta (BBA) - Mol Cell Res 1403:265–272. https://doi.org/10.1016/S0167-4889(98)00062-7

    Article  CAS  Google Scholar 

  152. Kusakabe Y, Yasuoka A, Asano-Miyoshi M et al (2000) Comprehensive study on G protein alpha-subunits in taste bud cells, with special reference to the occurrence of Galphai2 as a major Galpha species. Chem Senses 25:525–531. https://doi.org/10.1093/chemse/25.5.525

    Article  CAS  PubMed  Google Scholar 

  153. Laffitte A, Neiers F, Briand L (2014) Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care 17:379–385. https://doi.org/10.1097/MCO.0000000000000058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lapis TJ, Penner MH, Lim J (2014) Evidence that humans can taste glucose polymers. Chem Senses 39:737–747. https://doi.org/10.1093/chemse/bju031

    Article  CAS  PubMed  Google Scholar 

  155. Lapis TJ, Penner MH, Lim J (2016) Humans can taste glucose oligomers independent of the hT1R2/hT1R3 sweet taste receptor. Chem Senses. https://doi.org/10.1093/chemse/bjw088

  156. Laskowski AI, Medler KF (2009) Sodium-calcium exchangers contribute to the regulation of cytosolic calcium levels in mouse taste cells. J Physiol Lond 587:4077–4089. https://doi.org/10.1113/jphysiol.2009.173567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee AA, Owyang C (2017) Sugars, sweet taste receptors, and brain responses. Nutrients 9. https://doi.org/10.3390/nu9070653

  158. Lee RJ, Cohen NA (2014) Bitter and sweet taste receptors in the respiratory epithelium in health and disease. J Mol Med 92:1235–1244. https://doi.org/10.1007/s00109-014-1222-6

    Article  PubMed  Google Scholar 

  159. Lee JS, Cho AN, Jin Y et al (2018) Bio-artificial tongue with tongue extracellular matrix and primary taste cells. Biomaterials 151:019. https://doi.org/10.1016/j.biomaterials.2017.10.019

    Article  CAS  Google Scholar 

  160. Leech CA, Dzhura I, Chepurny OG et al (2011) Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. Prog Biophys Mol Biol 107:236–247. https://doi.org/10.1016/j.pbiomolbio.2011.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lemon CH (2015) Perceptual and neural responses to sweet taste in humans and rodents. Chemosens Percept 8:46–52. https://doi.org/10.1007/s12078-015-9177-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lemon CH, Margolskee RF (2009) Contribution of the T1r3 taste receptor to the response properties of central gustatory neurons. J Neurophysiol 101:2459–2471. https://doi.org/10.1152/jn.90892.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li X, Staszewski L, Xu H et al (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A 99:4692–4696. https://doi.org/10.1073/pnas.072090199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liang Y, Steinbach G, Maier V et al (1987) The effect of artificial sweetener on insulin secretion. 1. The effect of acesulfame K on insulin secretion in the rat (studies in vivo). Horm Metab Res 19:233–238. https://doi.org/10.1055/s-2007-1011788

    Article  CAS  PubMed  Google Scholar 

  165. Light PE, Manning Fox JE, Riedel MJ et al (2002) Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol 16:2135–2144. https://doi.org/10.1210/me.2002-0084

    Article  CAS  PubMed  Google Scholar 

  166. Lim J, Johnson MB (2011) Potential mechanisms of retronasal odor referral to the mouth. Chem Senses 36:283–289. https://doi.org/10.1093/chemse/bjq125

    Article  CAS  PubMed  Google Scholar 

  167. Lim J, Pullicin AJ (2019) Oral carbohydrate sensing: Beyond sweet taste. Physiol Behav 202:14–25. https://doi.org/10.1016/j.physbeh.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  168. Lindemann B (1996) Taste reception. Physiol Rev 76:719–766. https://doi.org/10.1152/physrev.1996.76.3.719

    Article  CAS  PubMed  Google Scholar 

  169. Lohner S, Toews I, Meerpohl JJ (2017) Health outcomes of non-nutritive sweeteners: analysis of the research landscape. Nutr J 16:55. https://doi.org/10.1186/s12937-017-0278-x

    Article  PubMed  PubMed Central  Google Scholar 

  170. Louchami K, Best L, Brown P et al (2012) A new role for aquaporin 7 in insulin secretion. Cell Physiol Biochem 29:65–74. https://doi.org/10.1159/000337588

    Article  CAS  PubMed  Google Scholar 

  171. Louis-Sylvestre J (1976) Preabsorptive insulin release and hypoglycemia in rats. Am J Phys 230:56–60. https://doi.org/10.1152/ajplegacy.1976.230.1.56

    Article  CAS  Google Scholar 

  172. Louis-Sylvestre J, Le Magnen J (1980) Palatability and preabsorptive insulin release. Neurosci Biobehav Rev 4:43–46. https://doi.org/10.1016/0149-7634(80)90047-0

    Article  PubMed  Google Scholar 

  173. Lu S-g, F-l Z, Herness S (2003) Physiological phenotyping of cholecystokinin-responsive rat taste receptor cells. Neurosci Lett 351:157–160. https://doi.org/10.1016/j.neulet.2003.07.016

    Article  CAS  PubMed  Google Scholar 

  174. Ma J, Bellon M, Wishart JM et al (2009) Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol 296:G735–G739. https://doi.org/10.1152/ajpgi.90708.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ma J, Chang J, Checklin HL et al (2010) Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects. Br J Nutr 104:803–806. https://doi.org/10.1017/S0007114510001327

    Article  CAS  PubMed  Google Scholar 

  176. Malaisse WJ, Zhang Y, Louchami K et al (2004) Stimulation by d-glucose of 36Cl- efflux from prelabeled rat pancreatic islets. ENDO 25:23–26. https://doi.org/10.1385/ENDO:25:1:23

    Article  CAS  Google Scholar 

  177. Margolskee RF (1993) The biochemistry and molecular biology of taste transduction. Curr Opin Neurobiol 3:526–531

    Article  CAS  Google Scholar 

  178. Margolskee RF (1993) The molecular biology of taste transduction. Bioessays 15:645–650. https://doi.org/10.1002/bies.950151003

    Article  CAS  PubMed  Google Scholar 

  179. Margolskee RF, Dyer J, Kokrashvili Z et al (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci U S A 104:15075–15080. https://doi.org/10.1073/pnas.0706678104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Martin B, Dotson CD, Shin Y-K et al (2009) Modulation of taste sensitivity by GLP-1 signaling in taste buds. Ann N Y Acad Sci 1170:98–101. https://doi.org/10.1111/j.1749-6632.2009.03920.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Martin B, Shin Y-K, White CM et al (2010) Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression. Diabetes 59:1143–1152. https://doi.org/10.2337/db09-0807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Martin C, Passilly-Degrace P, Chevrot M et al (2012) Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res 53:2256–2265. https://doi.org/10.1194/jlr.M025874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Matsumoto I, Ohmoto M, Yasuoka A et al (2009) Genetic tracing of the gustatory neural pathway originating from T1R3-expressing sweet/umami taste receptor cells. Ann N Y Acad Sci 1170:46–50. https://doi.org/10.1111/j.1749-6632.2009.03932.x

    Article  CAS  PubMed  Google Scholar 

  184. Mattes RD (2000) Nutritional implications of the cephalic-phase salivary response. Appetite 34:177–183. https://doi.org/10.1006/appe.1999.0278

    Article  CAS  PubMed  Google Scholar 

  185. Max M, Shanker YG, Huang L et al (2001) Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28:58–63. https://doi.org/10.1038/88270

    Article  CAS  PubMed  Google Scholar 

  186. McLaughlin SK, McKinnon PJ, Margolskee RF (1992) Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357:563–569. https://doi.org/10.1038/357563a0

    Article  CAS  PubMed  Google Scholar 

  187. Medina A, Nakagawa Y, Ma J et al (2014) Expression of the glucose-sensing receptor T1R3 in pancreatic islet: changes in the expression levels in various nutritional and metabolic states. Endocr J 61:797–805. https://doi.org/10.1507/endocrj.ej14-0221

    Article  CAS  PubMed  Google Scholar 

  188. Medina J, Nakagawa Y, Nagasawa M et al (2016) Positive allosteric modulation of the calcium-sensing receptor by physiological concentrations of glucose. J Biol Chem 291:23126–23135. https://doi.org/10.1074/jbc.M116.729863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Medler KF (2015) Calcium signaling in taste cells. Biochim Biophys Acta 1853:2025–2032. https://doi.org/10.1016/j.bbamcr.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  190. Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8:728–742. https://doi.org/10.1038/nrendo.2012.140

    Article  CAS  PubMed  Google Scholar 

  191. Meier JJ, Nauck MA (2005) Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev 21:91–117. https://doi.org/10.1002/dmrr.538

    Article  CAS  PubMed  Google Scholar 

  192. Meier JJ, Nauck MA, Kranz D et al (2004) Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53:654–662. https://doi.org/10.2337/diabetes.53.3.654

    Article  CAS  PubMed  Google Scholar 

  193. Meloni AR, DeYoung MB, Lowe C et al (2013) GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes Obes Metab 15:15–27. https://doi.org/10.1111/j.1463-1326.2012.01663.x

    Article  CAS  PubMed  Google Scholar 

  194. Merigo F, Benati D, Cecchini MP et al (2009) Amylase expression in taste receptor cells of rat circumvallate papillae. Cell Tissue Res 336:411–421. https://doi.org/10.1007/s00441-009-0789-7

    Article  CAS  PubMed  Google Scholar 

  195. Merigo F, Benati D, Cristofoletti M et al (2011) Glucose transporters are expressed in taste receptor cells. J Anat 219:243–252. https://doi.org/10.1111/j.1469-7580.2011.01385.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Miki T, Nagashima K, Tashiro F et al (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci U S A 95:10402–10406

    Article  CAS  Google Scholar 

  197. Miley HE, Sheader EA, Brown PD et al (1997) Glucose-induced swelling in rat pancreatic beta-cells. J Physiol Lond 504(Pt 1):191–198. https://doi.org/10.1111/j.1469-7793.1997.00191.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ming D, Ruiz-Avila L, Margolskee RF (1998) Characterization and solubilization of bitter-responsive receptors that couple to gustducin. Proc Natl Acad Sci U S A 95:8933–8938. https://doi.org/10.1073/pnas.95.15.8933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Misaka T, Kusakabe Y, Emori Y et al (1997) Taste buds have a cyclic nucleotide-activated channel, CNGgust. J Biol Chem 272:22623–22629. https://doi.org/10.1074/jbc.272.36.22623

    Article  CAS  PubMed  Google Scholar 

  200. Miyasaka A, Imoto T (1995) Electrophysiological characterization of the inhibitory effect of a novel peptide gurmarin on the sweet taste response in rats. Brain Res 676:63–68. https://doi.org/10.1016/0006-8993(95)00086-6

    Article  CAS  PubMed  Google Scholar 

  201. von Molitor E, Nürnberg E, Ertongur-Fauth T et al (2020) Analysis of calcium signaling in live human tongue cell 3D-cultures upon tastant perfusion. Cell Calcium 87:102164. https://doi.org/10.1016/j.ceca.2020.102164

    Article  CAS  Google Scholar 

  202. von Molitor E, Riedel K, Hafner M et al (2020) Sensing senses: optical biosensors to study gustation. Sens (Basel) 20. https://doi.org/10.3390/s20071811

  203. Montmayeur JP, Liberles SD, Matsunami H et al (2001) A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4:492–498. https://doi.org/10.1038/87440

    Article  CAS  PubMed  Google Scholar 

  204. Morricone L, Bombonato M, Cattaneo AG et al (2000) Food-related sensory stimuli are able to promote pancreatic polypeptide elevation without evident cephalic phase insulin secretion in human obesity. Horm Metab Res 32:240–245. https://doi.org/10.1055/s-2007-978628

    Article  CAS  PubMed  Google Scholar 

  205. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Asp Med 34:121–138. https://doi.org/10.1016/j.mam.2012.07.001

    Article  CAS  Google Scholar 

  206. Mueller KL, Hoon MA, Erlenbach I et al (2005) The receptors and coding logic for bitter taste. Nature 434:225–229. https://doi.org/10.1038/nature03352

    Article  CAS  PubMed  Google Scholar 

  207. Naim M, Ronen T, Striem BJ et al (1991) Adenylate cyclase responses to sucrose stimulation in membranes of pig circumvallate taste papillae. Comp Biochem Physiol B Comp Biochem 100:455–458. https://doi.org/10.1016/0305-0491(91)90203-P

    Article  CAS  Google Scholar 

  208. Nakabayashi H (1996) Nishizawa M, Nakagawa A, Takeda R, Niijima A. Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1. Am J Physiol Endocrinol Metab 271:E808–E813

    Article  CAS  Google Scholar 

  209. Nakagawa Y, Nagasawa M, Yamada S et al (2009) Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One 4:e5106. https://doi.org/10.1371/journal.pone.0005106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Nakagawa Y, Nagasawa M, Mogami H et al (2013) Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocr J 60:1191–1206. https://doi.org/10.1507/endocrj.ej13-0282

    Article  CAS  PubMed  Google Scholar 

  211. Nelson G, Hoon MA, Chandrashekar J et al (2001) Mammalian sweet taste receptors. Cell 106:381–390. https://doi.org/10.1016/S0092-8674(01)00451-2

    Article  CAS  PubMed  Google Scholar 

  212. Ng K, Woo J, Kwan M et al (2004) Effect of age and disease on taste perception. J Pain Symptom Manag 28:28–34. https://doi.org/10.1016/j.jpainsymman.2003.11.007

    Article  Google Scholar 

  213. Nijjar MS, Perry WF (1970) Effects of intravenous and oral infusion of monosaccharides on serum insulin levels in rabbits. Diabetes 19:155–160. https://doi.org/10.2337/diab.19.3.155

    Article  CAS  PubMed  Google Scholar 

  214. Ninomiya Y, Inoue M, Imoto T et al (1997) Lack of gurmarin sensitivity of sweet taste receptors innervated by the glossopharyngeal nerve in C57BL mice. Am J Phys 272:R1002–R1006. https://doi.org/10.1152/ajpregu.1997.272.3.R1002

    Article  CAS  Google Scholar 

  215. Nissenbaum JW, Sclafani A (1987) Qualitative differences in polysaccharide and sugar tastes in the rat: a two-carbohydrate taste model. Neurosci Biobehav Rev 11:187–196. https://doi.org/10.1016/S0149-7634(87)80025-8

    Article  CAS  PubMed  Google Scholar 

  216. Ogura T, Margolskee RF, Kinnamon SC (2002) Taste receptor cell responses to the bitter stimulus denatonium involve Ca2+ influx via store-operated channels. J Neurophysiol 87:3152–3155. https://doi.org/10.1152/jn.2002.87.6.3152

    Article  CAS  PubMed  Google Scholar 

  217. Ohkuri T, Yasumatsu K, Horio N et al (2009) Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. Am J Phys Regul Integr Comp Phys 296:R960–R971. https://doi.org/10.1152/ajpregu.91018.2008

    Article  CAS  Google Scholar 

  218. Ohla K, Yoshida R, Roper SD et al (2019) Recognizing taste: coding patterns along the neural axis in mammals. Chem Senses 44:237–247. https://doi.org/10.1093/chemse/bjz013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Oliveira-Maia AJ, de Araujo IE, Monteiro C et al (2012) The insular cortex controls food preferences independently of taste receptor signaling. Front Syst Neurosci 6:5. https://doi.org/10.3389/fnsys.2012.00005

    Article  PubMed  PubMed Central  Google Scholar 

  220. Oyama Y, Yamano H, Ohkuma A et al (1999) Carrier-mediated transport systems for glucose in mucosal cells of the human oral cavity. J Pharm Sci 88:830–834. https://doi.org/10.1021/js980298f

    Article  CAS  PubMed  Google Scholar 

  221. Park SE, Georgescu A, Huh D (2019) Organoids-on-a-chip. Science 364:960–965. https://doi.org/10.1126/science.aaw7894

    Article  CAS  PubMed  Google Scholar 

  222. Parker HE, Adriaenssens A, Rogers G et al (2012) Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia 55:2445–2455. https://doi.org/10.1007/s00125-012-2585-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Parma V, Ohla K, Veldhuizen MG et al (2020) More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. Chem Senses. https://doi.org/10.1093/chemse/bjaa041

  224. Pavlov IP (1910) The work of the digestive glands. https://archive.org/details/workofdigestiveg00pavlrich/page/114/mode/2up.

  225. Pepino MY, Tiemann CD, Patterson BW et al (2013) Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care 36:2530–2535. https://doi.org/10.2337/dc12-2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Perea-Martinez I, Nagai T, Chaudhari N (2013) Functional cell types in taste buds have distinct longevities. PLoS One 8:e53399. https://doi.org/10.1371/journal.pone.0053399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects*. J Clin Invest 46:1954–1962

    Article  CAS  Google Scholar 

  228. Powley TL (2000) Vagal circuitry mediating cephalic-phase responses to food. Appetite 34:184–188. https://doi.org/10.1006/appe.1999.0279

    Article  CAS  PubMed  Google Scholar 

  229. Powley TL, Berthoud HR (1985) Diet and cephalic phase insulin responses. Am J Clin Nutr 42:991–1002. https://doi.org/10.1093/ajcn/42.5.991

    Article  CAS  PubMed  Google Scholar 

  230. Prawitt D, Monteilh-Zoller MK, Brixel L et al (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in Ca2+i. Proc Natl Acad Sci U S A 100:15166–15171. https://doi.org/10.1073/pnas.2334624100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Pronin AN, Xu H, Tang H et al (2007) Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Curr Biol 17:1403–1408. https://doi.org/10.1016/j.cub.2007.07.046

    Article  CAS  PubMed  Google Scholar 

  232. Pullicin AJ, Penner MH, Lim J (2017) Human taste detection of glucose oligomers with low degree of polymerization. PLoS One 12:e0183008. https://doi.org/10.1371/journal.pone.0183008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Reimann F, Gribble FM (2002) Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51:2757–2763. https://doi.org/10.2337/diabetes.51.9.2757

    Article  CAS  PubMed  Google Scholar 

  234. Reimann F, Habib AM, Tolhurst G et al (2008) Glucose sensing in L cells: a primary cell study. Cell Metab 8:532–539. https://doi.org/10.1016/j.cmet.2008.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Ren X, Zhou L, Terwilliger R et al (2009) Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci 3:12. https://doi.org/10.3389/neuro.07.012.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ren X, Ferreira JG, Zhou L et al (2010) Nutrient selection in the absence of taste receptor signaling. J Neurosci 30:8012–8023. https://doi.org/10.1523/JNEUROSCI.5749-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ren W, Lewandowski BC, Watson J et al (2014) Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci U S A 111:16401–16406. https://doi.org/10.1073/pnas.1409064111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ren W, Aihara E, Lei W et al (2017) Transcriptome analyses of taste organoids reveal multiple pathways involved in taste cell generation. Sci Rep 7:4004. https://doi.org/10.1038/s41598-017-04099-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Robayo-Torres CC, Quezada-Calvillo R, Nichols BL (2006) Disaccharide digestion: clinical and molecular aspects. Clin Gastroenterol Hepatol 4:276–287. https://doi.org/10.1016/j.cgh.2005.12.023

    Article  CAS  PubMed  Google Scholar 

  240. Romanov RA, Lasher RS, High B et al (2018) Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Sci Signal 11. https://doi.org/10.1126/scisignal.aao1815

  241. Roper SD (2007) Signal transduction and information processing in mammalian taste buds. Pflugers Arch 454:759–776. https://doi.org/10.1007/s00424-007-0247-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Roper SD (2009) Parallel processing in mammalian taste buds? Physiol Behav 97:604–608. https://doi.org/10.1016/j.physbeh.2009.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Roper SD (2013) Taste buds as peripheral chemosensory processors. Semin Cell Dev Biol 24:71–79. https://doi.org/10.1016/j.semcdb.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  244. Roper SD, Chaudhari N (2017) Taste buds. Cells, signals and synapses. Nature Reviews Neuroscience 18:485 EP. https://doi.org/10.1038/nrn.2017.68

    Article  CAS  Google Scholar 

  245. Rössler P, Kroner C, Freitag J et al (1998) Identification of a phospholipase C β subtype in rat taste cells. Eur J Cell Biol 77:253–261. https://doi.org/10.1016/S0171-9335(98)80114-3

    Article  PubMed  Google Scholar 

  246. Rother KI, Conway EM, Sylvetsky AC (2018) How non-nutritive sweeteners influence hormones and health. Trends Endocrinol Metab 29:455–467. https://doi.org/10.1016/j.tem.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  247. Rozengurt N, Wu SV, Chen MC et al (2006) Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol 291:G792–G802. https://doi.org/10.1152/ajpgi.00074.2006

    Article  CAS  PubMed  Google Scholar 

  248. Rozengurt E (2006) Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol 291:G171–G177. https://doi.org/10.1152/ajpgi.00073.2006

    Article  CAS  PubMed  Google Scholar 

  249. Ruiz CJ, Wray K, Delay E et al (2003) Behavioral evidence for a role of alpha-gustducin in glutamate taste. Chem Senses 28:573–579. https://doi.org/10.1093/chemse/bjg049

    Article  CAS  PubMed  Google Scholar 

  250. Ruiz-Avila L, McLaughlin SK, Wildman D et al (1995) Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells. Nature 376:80–85. https://doi.org/10.1038/376080a0

    Article  CAS  PubMed  Google Scholar 

  251. Ruiz-Avila L, Wong GT, Damak S et al (2001) Dominant loss of responsiveness to sweet and bitter compounds caused by a single mutation in alpha-gustducin. Proc Natl Acad Sci U S A 98:8868–8873. https://doi.org/10.1073/pnas.151235798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sainz E, Korley JN, Battey JF et al (2001) Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77:896–903. https://doi.org/10.1046/j.1471-4159.2001.00292.x

    Article  CAS  PubMed  Google Scholar 

  253. Sainz E, Cavenagh MM, LopezJimenez ND et al (2007) The G-protein coupling properties of the human sweet and amino acid taste receptors. Dev Neurobiol 67:948–959. https://doi.org/10.1002/dneu.20403

    Article  CAS  PubMed  Google Scholar 

  254. Sako N, Shimura T, Komure M et al (1994) Differences in taste responses to Polycose and common sugars in the rat as revealed by behavioral and electrophysiological studies. Physiol Behav 56:741–745. https://doi.org/10.1016/0031-9384(94)90236-4

    Article  CAS  PubMed  Google Scholar 

  255. Saltiel MY, Kuhre RE, Christiansen CB et al (2017) Sweet taste receptor activation in the gut is of limited importance for glucose-stimulated GLP-1 and GIP secretion. Nutrients 9:418. https://doi.org/10.3390/nu9040418

    Article  CAS  PubMed Central  Google Scholar 

  256. San Gabriel AM (2015) Taste receptors in the gastrointestinal system. Flavour 4:2669. https://doi.org/10.1186/2044-7248-4-14

    Article  Google Scholar 

  257. Sandoval D (2008) CNS GLP-1 regulation of peripheral glucose homeostasis. Physiol Behav 94:670–674. https://doi.org/10.1016/j.physbeh.2008.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Sanematsu K, Yasumatsu K, Yoshida R et al (2005) Mouse strain differences in Gurmarin-sensitivity of sweet taste responses are not associated with polymorphisms of the sweet receptor gene, Tas1r3. Chem Senses 30:491–496. https://doi.org/10.1093/chemse/bji041

    Article  CAS  PubMed  Google Scholar 

  259. Scheepers A, Joost H-G, Schürmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr 28:364–371. https://doi.org/10.1177/0148607104028005364

    Article  CAS  PubMed  Google Scholar 

  260. Schier LA, Spector AC (2016) Behavioral evidence for more than one taste signaling pathway for sugars in rats. J Neurosci 36:113–124. https://doi.org/10.1523/JNEUROSCI.3356-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Schier LA, Inui-Yamamoto C, Blonde GD et al (2019) T1R2+T1R3-independent chemosensory inputs contributing to behavioral discrimination of sugars in mice. Am J Phys Regul Integr Comp Phys 316:R448–R462. https://doi.org/10.1152/ajpregu.00255.2018

    Article  CAS  Google Scholar 

  262. Schirra J, Göke B (2005) The physiological role of GLP-1 in human: incretin, ileal brake or more? Regul Pept 128:109–115. https://doi.org/10.1016/j.regpep.2004.06.018

    Article  CAS  PubMed  Google Scholar 

  263. Sclafani A, Zukerman S, Glendinning JI et al (2007) Fat and carbohydrate preferences in mice: the contribution of alpha-gustducin and Trpm5 taste-signaling proteins. Am J Phys Regul Integr Comp Phys 293:R1504–R1513. https://doi.org/10.1152/ajpregu.00364.2007

    Article  CAS  Google Scholar 

  264. Sclafani A, Zukerman S, Ackroff K (2020) Residual glucose taste in T1R3 knockout but not TRPM5 knockout mice. Physiol Behav 222:112945. https://doi.org/10.1016/j.physbeh.2020.112945

    Article  CAS  PubMed  Google Scholar 

  265. Seghers V, Nakazaki M, DeMayo F et al (2000) Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem 275:9270–9277. https://doi.org/10.1074/jbc.275.13.9270

    Article  CAS  PubMed  Google Scholar 

  266. Seino S, Iwanaga T, Nagashima K et al (2000) Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes 49:311–318. https://doi.org/10.2337/diabetes.49.3.311

    Article  CAS  PubMed  Google Scholar 

  267. Seino Y, Miki T, Fujimoto W et al (2013) Cephalic phase insulin secretion is KATP channel independent. J Endocrinol 218:25–33. https://doi.org/10.1530/JOE-12-0579

    Article  CAS  PubMed  Google Scholar 

  268. Seino Y, Maekawa R, Ogata H et al (2016) Carbohydrate-induced secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. J Diabetes Investig 7(Suppl 1):27–32. https://doi.org/10.1111/jdi.12449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Shah M, Deeb J, Fernando M et al (2009) Abnormality of taste and smell in Parkinson’s disease. Parkinsonism Relat Disord 15:232–237. https://doi.org/10.1016/j.parkreldis.2008.05.008

    Article  PubMed  Google Scholar 

  270. Shen T, Kaya N, Zhao F-L et al (2005) Co-expression patterns of the neuropeptides vasoactive intestinal peptide and cholecystokinin with the transduction molecules alpha-gustducin and T1R2 in rat taste receptor cells. Neuroscience 130:229–238. https://doi.org/10.1016/j.neuroscience.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  271. Shimizu I, Hirota M, Ohboshi C et al (1987) Identification and localization of glucagon-like peptide-1 and its receptor in rat brain. Endocrinology 121:1076–1082. https://doi.org/10.1210/endo-121-3-1076

    Article  CAS  PubMed  Google Scholar 

  272. Shin Y-K, Martin B, Golden E et al (2008) Modulation of taste sensitivity by GLP-1 signaling. J Neurochem 106:455–463. https://doi.org/10.1111/j.1471-4159.2008.05397.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Shin Y-J, Park J-H, Choi J-S et al (2010) Enhanced expression of the sweet taste receptors and alpha-gustducin in reactive astrocytes of the rat hippocampus following ischemic injury. Neurochem Res 35:1628–1634. https://doi.org/10.1007/s11064-010-0223-2

    Article  CAS  PubMed  Google Scholar 

  274. Shindo Y, Miura H, Carninci P et al (2008) G alpha14 is a candidate mediator of sweet/umami signal transduction in the posterior region of the mouse tongue. Biochem Biophys Res Commun 376:504–508. https://doi.org/10.1016/j.bbrc.2008.09.035

    Article  CAS  PubMed  Google Scholar 

  275. Shinozaki K, Shimizu Y, Shiina T et al (2008) Relationship between taste-induced physiological reflexes and temperature of sweet taste. Physiol Behav 93:1000–1004. https://doi.org/10.1016/j.physbeh.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  276. Simon C, Schlienger JL, Sapin R et al (1986) Cephalic phase insulin secretion in relation to food presentation in normal and overweight subjects. Physiol Behav 36:465–469. https://doi.org/10.1016/0031-9384(86)90316-1

    Article  CAS  PubMed  Google Scholar 

  277. Simon BR, Learman BS, Parlee SD et al (2014) Sweet taste receptor deficient mice have decreased adiposity and increased bone mass. PLoS One 9:e86454. https://doi.org/10.1371/journal.pone.0086454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Sinclair EM, Drucker DJ (2005) Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiology (Bethesda) 20:357–365. https://doi.org/10.1152/physiol.00030.2005

    Article  CAS  Google Scholar 

  279. Small DM (2012) Flavor is in the brain. Physiol Behav 107:540–552. https://doi.org/10.1016/j.physbeh.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  280. Smeets PAM, Erkner A, de Graaf C (2010) Cephalic phase responses and appetite. Nutr Rev 68:643–655. https://doi.org/10.1111/j.1753-4887.2010.00334.x

    Article  PubMed  Google Scholar 

  281. Smith K, Karimian Azari E, LaMoia TE et al (2018) T1R2 receptor-mediated glucose sensing in the upper intestine potentiates glucose absorption through activation of local regulatory pathways. Mol Metab 17:98–111. https://doi.org/10.1016/j.molmet.2018.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Smith JC, Sclafani A (2002) Saccharin as a sugar surrogate revisited. Appetite 38:155–160. https://doi.org/10.1006/appe.2001.0467

    Article  PubMed  Google Scholar 

  283. Smith NK, Hackett TA, Galli A et al (2019) GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 128:94–105. https://doi.org/10.1016/j.neuint.2019.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Smith EP, An Z, Wagner C et al (2014) The role of β cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab 19:1050–1057. https://doi.org/10.1016/j.cmet.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Smith DV, Lemon CH (eds) (2007) The role of the nucleus of the solitary tract in gustatory processing. CRC Press/Taylor & Francis, New York

    Google Scholar 

  286. Sollars SI, Hill DL (2005) In vivo recordings from rat geniculate ganglia: taste response properties of individual greater superficial petrosal and chorda tympani neurones. J Physiol Lond 564:877–893. https://doi.org/10.1113/jphysiol.2005.083741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Spector AC (2000) Linking gustatory neurobiology to behavior in vertebrates. Neurosci Biobehav Rev 24:391–416. https://doi.org/10.1016/S0149-7634(00)00013-0

    Article  CAS  PubMed  Google Scholar 

  288. Spector AC (2003) The functional organization of the peripheral gustatory system: Lessons from behavior. In: Fluharty SJ, Grill HJ (eds) Progress in psychobiology and physiological psychology, vol 18. Academic Press, San Diego, pp 101–161

    Chapter  Google Scholar 

  289. Spector AC, Travers SP (2005) The representation of taste quality in the mammalian nervous system. Behav Cogn Neurosci Rev 4:143–191. https://doi.org/10.1177/1534582305280031

    Article  PubMed  Google Scholar 

  290. Spence C (2016) Oral referral: on the mislocalization of odours to the mouth. Food Qual Prefer 50:117–128. https://doi.org/10.1016/j.foodqual.2016.02.006

    Article  Google Scholar 

  291. Spielman AI (1998) Gustducin and its role in taste. J Dent Res 77:539–544. https://doi.org/10.1177/00220345980770040601

    Article  CAS  PubMed  Google Scholar 

  292. Stearns AT, Balakrishnan A, Rhoads DB et al (2010) Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation. Ann Surg 251:865–871. https://doi.org/10.1097/SLA.0b013e3181d96e1f

    Article  PubMed  PubMed Central  Google Scholar 

  293. Steinbach S, Hundt W, Vaitl A et al (2010) Taste in mild cognitive impairment and Alzheimer's disease. J Neurol 257:238–246. https://doi.org/10.1007/s00415-009-5300-6

    Article  PubMed  Google Scholar 

  294. Steinert RE, Gerspach AC, Gutmann H et al (2011) The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr 30:524–532. https://doi.org/10.1016/j.clnu.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  295. Stone LM, Barrows J, Finger TE et al (2007) Expression of T1Rs and gustducin in palatal taste buds of mice. Chem Senses 32:255–262. https://doi.org/10.1093/chemse/bjl053

    Article  CAS  PubMed  Google Scholar 

  296. Striem BJ, Naim M, Lindemann B (1991) Generation of cyclic AMP in taste buds of the rat circumvallate papilla in response to sucrose. Cell Physiol Biochem 1:46–54. https://doi.org/10.1159/000154592

    Article  CAS  Google Scholar 

  297. Stuhlmann T, Planells-Cases R, Jentsch TJ (2018) LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat Commun 9:1–12. https://doi.org/10.1038/s41467-018-04353-y

    Article  CAS  Google Scholar 

  298. Sukumaran SK, Yee KK, Iwata S et al (2016) Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. Proc Natl Acad Sci U S A 113:6035–6040. https://doi.org/10.1073/pnas.1520843113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Sun EW, de Fontgalland D, Rabbitt P et al (2017) Mechanisms controlling glucose-induced GLP-1 secretion in human small intestine. Diabetes 66:2144–2149. https://doi.org/10.2337/db17-0058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Svendsen B, Larsen O, Gabe MBN et al (2018) Insulin secretion depends on intra-islet glucagon signaling. Cell Rep 25:1127–1134.e2. https://doi.org/10.1016/j.celrep.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  301. Swithers SE (2013) Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab 24:431–441. https://doi.org/10.1016/j.tem.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Swithers SE, Laboy AF, Clark K et al (2012) Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats. Behav Brain Res 233:1–14. https://doi.org/10.1016/j.bbr.2012.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Sylvetsky AC, Brown RJ, Blau JE et al (2016) Hormonal responses to non-nutritive sweeteners in water and diet soda. Nutr Metab (Lond) 13:71. https://doi.org/10.1186/s12986-016-0129-3

    Article  CAS  Google Scholar 

  304. Takai S, Yasumatsu K, Inoue M et al (2015) Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J 29:2268–2280. https://doi.org/10.1096/fj.14-265355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Takai S, Watanabe Y, Sanematsu K et al (2019) Effects of insulin signaling on mouse taste cell proliferation. PLoS One 14:e0225190. https://doi.org/10.1371/journal.pone.0225190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Talavera K, Yasumatsu K, Voets T et al (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025. https://doi.org/10.1038/nature04248

    Article  CAS  PubMed  Google Scholar 

  307. Tan H-E, Sisti AC, Jin H et al (2020) The gut-brain axis mediates sugar preference. Nature 580:511–516. https://doi.org/10.1038/s41586-020-2199-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Taniguchi K (2004) Expression of the sweet receptor protein, T1R3, in the human liver and pancreas. J Vet Med Sci 66:1311–1314. https://doi.org/10.1292/jvms.66.1311

    Article  CAS  PubMed  Google Scholar 

  309. Taruno A, Vingtdeux V, Ohmoto M et al (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495:223–226. https://doi.org/10.1038/nature11906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Teff K (2000) Nutritional implications of the cephalic-phase reflexes: endocrine responses. Appetite 34:206–213. https://doi.org/10.1006/appe.1999.0282

    Article  CAS  PubMed  Google Scholar 

  311. Teff KL, Engelman K (1996) Oral sensory stimulation improves glucose tolerance in humans: effects on insulin, C-peptide, and glucagon. Am J Phys 270:R1371–R1379. https://doi.org/10.1152/ajpregu.1996.270.6.R1371

    Article  CAS  Google Scholar 

  312. Teff KL, Mattes RD, Engelman K (1991) Cephalic phase insulin release in normal weight males: verification and reliability. Am J Phys 261:E430–E436. https://doi.org/10.1152/ajpendo.1991.261.4.E430

    Article  CAS  Google Scholar 

  313. Teff KL, Engelman K (1996) Palatability and dietary restraint: effect on cephalic phase insulin release in women. Physiol Behav 60:567–573. https://doi.org/10.1016/S0031-9384(96)80033-3

    Article  CAS  PubMed  Google Scholar 

  314. Teff KL, Mattes RD, Engelman K et al (1993) Cephalic-phase insulin in obese and normal-weight men: relation to postprandial insulin. Metabolism 42:1600–1608. https://doi.org/10.1016/0026-0495(93)90157-J

    Article  CAS  PubMed  Google Scholar 

  315. Teff KL, Devine J, Engelman K (1995) Sweet taste: effect on cephalic phase insulin release in men. Physiol Behav 57:1089–1095. https://doi.org/10.1016/0031-9384(94)00373-D

    Article  CAS  PubMed  Google Scholar 

  316. Tellez LA, Ren X, Han W et al (2013) Glucose utilization rates regulate intake levels of artificial sweeteners. J Physiol Lond 591:5727–5744. https://doi.org/10.1113/jphysiol.2013.263103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Tellez LA, Han W, Zhang X et al (2016) Separate circuitries encode the hedonic and nutritional values of sugar. Nat Neurosci 19:465–470. https://doi.org/10.1038/nn.4224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Temizkan S, Deyneli O, Yasar M et al (2015) Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin Nutr 69:162–166. https://doi.org/10.1038/ejcn.2014.208

    Article  CAS  PubMed  Google Scholar 

  319. Theodorakis MJ, Carlson O, Michopoulos S et al (2006) Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 290:E550–E559. https://doi.org/10.1152/ajpendo.00326.2004

    Article  CAS  PubMed  Google Scholar 

  320. Tizzano M, Dvoryanchikov G, Barrows JK et al (2008) Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue. BMC Neurosci 9:110. https://doi.org/10.1186/1471-2202-9-110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Tonosaki K, Hori Y, Shimizu Y et al (2007) Relationships between insulin release and taste. Biomed Res 28:79–83

    Article  CAS  Google Scholar 

  322. Toyono T, Seta Y, Kataoka S et al (2011) Differential expression of the glucose transporters in mouse gustatory papillae. Cell Tissue Res 345:243–252. https://doi.org/10.1007/s00441-011-1210-x

    Article  CAS  PubMed  Google Scholar 

  323. Travers SP, Pfaffmann C, Norgren R (1986) Convergence of lingual and palatal gustatory neural activity in the nucleus of the solitary tract. Brain Res 365:305–320. https://doi.org/10.1016/0006-8993(86)91642-2

    Article  CAS  PubMed  Google Scholar 

  324. Travers SP, Norgren R (1995) Organization of orosensory responses in the nucleus of the solitary tract of rat. J Neurophysiol 73:2144–2162. https://doi.org/10.1152/jn.1995.73.6.2144

    Article  CAS  PubMed  Google Scholar 

  325. Treesukosol Y, Spector AC (2012) Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal. Am J Phys Regul Integr Comp Phys 303:R218–R235. https://doi.org/10.1152/ajpregu.00089.2012

    Article  CAS  Google Scholar 

  326. Treesukosol Y, Blonde GD, Spector AC (2009) T1R2 and T1R3 subunits are individually unnecessary for normal affective licking responses to polycose: implications for saccharide taste receptors in mice. Am J Phys Regul Integr Comp Phys 296:R855–R865. https://doi.org/10.1152/ajpregu.90869.2008

    Article  CAS  Google Scholar 

  327. Treesukosol Y, Smith KR, Spector AC (2011) The functional role of the T1R family of receptors in sweet taste and feeding. Physiol Behav 105:14–26. https://doi.org/10.1016/j.physbeh.2011.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Trubey KR, Culpepper S, Maruyama Y et al (2006) Tastants evoke cAMP signal in taste buds that is independent of calcium signaling. Am J Phys Cell Phys 291:C237–C244. https://doi.org/10.1152/ajpcell.00303.2005

    Article  CAS  Google Scholar 

  329. Valenstein ES, Kakolewski JW, Cox VC (1967) Sex differences in taste preference for glucose and saccharin solutions. Science 156:942–943. https://doi.org/10.1126/science.156.3777.942

    Article  CAS  PubMed  Google Scholar 

  330. van Buskirk RL, Erickson RP (1977) Odorant responses in taste neurons of the rat NTS. Brain Res 135:287–303. https://doi.org/10.1016/0006-8993(77)91032-0

    Article  PubMed  Google Scholar 

  331. Vigorito M, Sclafani A, Jacquin MF (1987) Effects of gustatory deafferentation on polycose and sucrose appetite in the rat. Neurosci Biobehav Rev 11:201–209. https://doi.org/10.1016/S0149-7634(87)80027-1

    Article  CAS  PubMed  Google Scholar 

  332. Watson KJ, Kim I, Baquero AF et al (2007) Expression of aquaporin water channels in rat taste buds. Chem Senses 32:411–421. https://doi.org/10.1093/chemse/bjm006

    Article  CAS  PubMed  Google Scholar 

  333. Wauson EM, Zaganjor E, Lee A-Y et al (2012) The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol Cell 47:851–862. https://doi.org/10.1016/j.molcel.2012.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Wee M, Tan V, Forde C (2018) A comparison of psychophysical dose-response behaviour across 16 sweeteners. Nutrients 10. doi: https://doi.org/10.3390/nu10111632

  335. Welcome MO (2018) Emerging role of the neuronal sweet taste receptor heterodimer, T1R2+ T1R3, in cognitive functioning. J Res Med Dent Sci 6:264–272

    Google Scholar 

  336. Welcome MO, Mastorakis NE, Pereverzev VA Sweet-taste receptor signaling network and low-calorie sweeteners 15:1–16. doi: https://doi.org/10.1007/978-3-319-26478-3_25-1

  337. Witt M (2019) Anatomy and development of the human taste system. Handb Clin Neurol 164:147–171. https://doi.org/10.1016/B978-0-444-63855-7.00010-1

    Article  PubMed  Google Scholar 

  338. Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381:796–800. https://doi.org/10.1038/381796a0

    Article  CAS  PubMed  Google Scholar 

  339. Woods SC, Bernstein IL (1980) Cephalic insulin response as a test for completeness of vagotomy to the pancreas. Physiol Behav 24:485–488. https://doi.org/10.1016/0031-9384(80)90241-3

    Article  CAS  PubMed  Google Scholar 

  340. Workman AD, Palmer JN, Adappa ND et al (2015) The role of bitter and sweet taste receptors in upper airway immunity. Curr Allergy Asthma Rep 15:72. https://doi.org/10.1007/s11882-015-0571-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Wright EM, Loo DD, Panayotova-Heiermann M et al (1994) ‘Active’ sugar transport in eukaryotes. J Exp Biol 196:197–212

    CAS  PubMed  Google Scholar 

  342. Wu T, Bound MJ, Standfield SD et al (2013) Artificial sweeteners have no effect on gastric emptying, glucagon-like peptide-1, or glycemia after oral glucose in healthy humans. Diabetes Care 36:e202–e203. https://doi.org/10.2337/dc13-0958

    Article  PubMed  PubMed Central  Google Scholar 

  343. Yamamoto K, Ishimaru Y (2013) Oral and extra-oral taste perception. Semin Cell Dev Biol 24:240–246. https://doi.org/10.1016/j.semcdb.2012.08.005

    Article  PubMed  Google Scholar 

  344. Yamazaki M, Sakaguchi T (1986) Effects of D-glucose anomers on sweetness taste and insulin release in man. Brain Res Bull 17:271–274. https://doi.org/10.1016/0361-9230(86)90126-7

    Article  CAS  PubMed  Google Scholar 

  345. Yan W, Sunavala G, Rosenzweig S et al (2001) Bitter taste transduced by PLC-beta(2)-dependent rise in IP(3) and alpha-gustducin-dependent fall in cyclic nucleotides. Am J Phys Cell Phys 280:C742–C751. https://doi.org/10.1152/ajpcell.2001.280.4.C742

    Article  CAS  Google Scholar 

  346. Yang H, Wanner IB, Roper SD et al (1999) An optimized method for in situ hybridization with signal amplification that allows the detection of rare mRNAs. J Histochem Cytochem 47:431–446. https://doi.org/10.1177/002215549904700402

    Article  CAS  PubMed  Google Scholar 

  347. Yasumatsu K, Ohkuri T, Sanematsu K et al (2009) Genetically-increased taste cell population with G-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice. BMC Neurosci 10:1–9. https://doi.org/10.1186/1471-2202-10-152

    Article  CAS  Google Scholar 

  348. Yee KK, Sukumaran SK, Kotha R et al (2011) Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc Natl Acad Sci U S A 108:5431–5436. https://doi.org/10.1073/pnas.1100495108

    Article  PubMed  PubMed Central  Google Scholar 

  349. Young RL, Sutherland K, Pezos N et al (2009) Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut 58:337–346. https://doi.org/10.1136/gut.2008.148932

    Article  CAS  PubMed  Google Scholar 

  350. Young RL (2011) Sensing via intestinal sweet taste pathways. Front Neurosci 5:23. https://doi.org/10.3389/fnins.2011.00023

    Article  PubMed  PubMed Central  Google Scholar 

  351. Zafra MA, Molina F, Puerto A (2006) The neural/cephalic phase reflexes in the physiology of nutrition. Neurosci Biobehav Rev 30:1032–1044. https://doi.org/10.1016/j.neubiorev.2006.03.005

    Article  PubMed  Google Scholar 

  352. Zaidi FN, Todd K, Enquist L et al (2008) Types of taste circuits synaptically linked to a few geniculate ganglion neurons. J Comp Neurol 511:753–772. https://doi.org/10.1002/cne.21869

    Article  PubMed  PubMed Central  Google Scholar 

  353. Zhang Y, Hoon MA, Chandrashekar J et al (2003) Coding of sweet, bitter, and umami tastes. Cell 112:293–301. https://doi.org/10.1016/S0092-8674(03)00071-0

    Article  CAS  PubMed  Google Scholar 

  354. F-l Z, Shen T, Kaya N et al (2005) Expression, physiological action, and coexpression patterns of neuropeptide Y in rat taste-bud cells. Proc Natl Acad Sci U S A 102:11100–11105. https://doi.org/10.1073/pnas.0501988102

    Article  CAS  Google Scholar 

  355. Zhao GQ, Zhang Y, Hoon MA et al (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266. https://doi.org/10.1016/s0092-8674(03)00844-4

    Article  CAS  PubMed  Google Scholar 

  356. Zheng Y, Sarr MG (2013) Effect of the artificial sweetener, acesulfame potassium, a sweet taste receptor agonist, on glucose uptake in small intestinal cell lines. J Gastrointest Surg 17:153–158; discussion 158. https://doi.org/10.1007/s11605-012-1998-z

    Article  PubMed  Google Scholar 

  357. Zukerman S, Glendinning JI, Margolskee RF et al (2009) T1R3 taste receptor is critical for sucrose but not polycose taste. Am J Phys Regul Integr Comp Phys 296:R866–R876. https://doi.org/10.1152/ajpregu.90870.2008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathias Hafner or Tiziana Cesetti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Molitor, E., Riedel, K., Krohn, M. et al. An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch - Eur J Physiol 472, 1667–1691 (2020). https://doi.org/10.1007/s00424-020-02467-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02467-1

Keywords

Navigation