Skip to main content

Advertisement

Log in

GDF15, an update of the physiological and pathological roles it plays: a review

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Growth differentiation factor 15 (GDF15) is a peptide hormone, and a divergent member of the transforming growth factor beta (TGFβ) superfamily. In normal physiology, GDF15 is expressed in multiple tissues at a low concentration. GDF15 is overexpressed during and following many pathological conditions such as tissue injury and inflammation in order to play a protective role. However, GDF15 appears to promote tumour growth in the later stages of malignant cancer. The recently identified endogenous receptor for GDF15, GDNF family receptor a-like (GFRAL), has allowed elucidation of a physiological pathway in which GDF15 regulates energy homeostasis and body weight, primarily via appetite suppression. The anorectic effect of GDF15 provides some therapeutic potential in management of cancer-related anorexia/cachexia and obesity. Despite the identification of GFRAL as a GDF15 receptor, there appears to be other signalling mechanisms utilized by GDF15 that further increase the possibility of development of therapeutic treatments, should these pathways be fully characterized. In this review, GDF15 function in both physiological and pathological conditions in various tissues will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abulizi P, Loganathan N, Zhao D, Mele T, Zhang Y, Zwiep T, Liu K, Zheng X (2017) Growth differentiation factor-15 deficiency augments inflammatory response and exacerbates septic heart and renal injury induced by lipopolysaccharide. Sci Rep 7(1):1037. https://doi.org/10.1038/s41598-017-00902-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Artz A, Butz S, Vestweber D (2016) GDF-15 inhibits integrin activation and mouse neutrophil recruitment through the ALK-5/TGF-betaRII heterodimer. Blood 128(4):529–541. https://doi.org/10.1182/blood-2016-01-696617

    Article  CAS  PubMed  Google Scholar 

  3. Baek SJ, Eling T (2019) Growth differentiation factor 15 (GDF15): a survival protein with therapeutic potential in metabolic diseases. Pharmacology & Therapeutics 198:46–58. https://doi.org/10.1016/j.pharmthera.2019.02.008

    Article  CAS  Google Scholar 

  4. Baek SJ, Horowitz JM, Eling TE (2001) Molecular cloning and characterization of human nonsteroidal anti-inflammatory drug-activated gene promoter. Basal transcription is mediated by Sp1 and Sp3. J Biol Chem 276(36):33384–33392. https://doi.org/10.1074/jbc.M101814200

    Article  CAS  PubMed  Google Scholar 

  5. Baek SJ, Kim KS, Nixon JB, Wilson LC, Eling TE (2001) Cyclooxygenase inhibitors regulate the expression of a TGF-β superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol 59(4):901–908. https://doi.org/10.1124/mol.59.4.901

    Article  CAS  PubMed  Google Scholar 

  6. Bauskin AR, Brown DA, Junankar S, Rasiah KK, Eggleton S, Hunter M, Liu T, Smith D, Kuffner T, Pankhurst GJ, Johnen H, Russell PJ, Barret W, Stricker PD, Grygiel JJ, Kench JG, Henshall SM, Sutherland RL, Breit SN (2005) The propeptide mediates formation of stromal stores of PROMIC-1: role in determining prostate cancer outcome. Cancer Res 65(6):2330–2336. https://doi.org/10.1158/0008-5472.Can-04-3827

    Article  CAS  PubMed  Google Scholar 

  7. Bauskin A, Jiang L, Luo X, Wu L, Brown D, Breit S (2010) The TGF-beta superfamily cytokine MIC-1/GDF15: secretory mechanisms facilitate creation of latent stromal stores. J Interf Cytokine Res 30(6):389–397. https://doi.org/10.1089/jir.2009.0052

    Article  CAS  Google Scholar 

  8. Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ, Nicholson RC, Fairlie WD, Por SB, Robbins JM, Breit SN (1997) MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc Natl Acad Sci U S A 94(21):11514–11519. https://doi.org/10.1073/pnas.94.21.11514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bottner M, Laaff M, Schechinger B, Rappold G, Unsicker K, Suter-Crazzolara C (1999) Characterization of the rat, mouse, and human genes of growth/differentiation factor-15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1). Gene 237(1):105–111. https://doi.org/10.1016/s0378-1119(99)00309-1

    Article  CAS  PubMed  Google Scholar 

  10. Brown DA, Hance KW, Rogers CJ, Sansbury LB, Albert PS, Murphy G, Laiyemo AO, Wang Z, Cross AJ, Schatzkin A, Danta M, Srasuebkul P, Amin J, Law M, Breit SN, Lanza E (2012) Serum macrophage inhibitory cytokine-1 (MIC-1/GDF15): a potential screening tool for the prevention of colon cancer? Cancer Epidemiology Biomarkers and Prevention 21(2):337–346. https://doi.org/10.1158/1055-9965.EPI-11-0786

    Article  CAS  Google Scholar 

  11. Burks TN, Cohn RD (2011) Role of TGF-beta signaling in inherited and acquired myopathies. Skelet Muscle 1(1):19. https://doi.org/10.1186/2044-5040-1-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chai YL, Hilal S, Chong JP, Ng YX, Liew OW, Xu X et al (2016) Growth differentiation factor-15 and white matter hyperintensities in cognitive impairment and dementia. Medicine (Baltimore) 95(33):e4566. https://doi.org/10.1097/md.0000000000004566

    Article  CAS  Google Scholar 

  13. Chen J, Dai W, Zhu C, Liu H, Li Y, Zhang P (2020) Circulating levels of growth differentiation factor 15 and sex hormones in male patients with HBV-associated hepatocellular carcinoma. Biomedicine & Pharmacotherapy 121:109574. https://doi.org/10.1016/j.biopha.2019.109574

    Article  CAS  Google Scholar 

  14. Cheng JC, Chang HM, Leung PC (2011) Wild-type p53 attenuates cancer cell motility by inducing growth differentiation factor-15 expression. Endocrinology 152(8):2987–2995. https://doi.org/10.1210/en.2011-0059

    Article  CAS  PubMed  Google Scholar 

  15. Chrysovergis K, Wang X, Kosak J, Lee S-H, Kim JS, Foley JF, Travlos G, Singh S, Baek SJ, Eling TE (2014) NAG-1/GDF15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. International journal of obesity (2005) 38(12):1555–1564. https://doi.org/10.1038/ijo.2014.27

    Article  CAS  Google Scholar 

  16. Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi H, Kang SG et al (2016) Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol 216(1):149–165. https://doi.org/10.1083/jcb.201607110

    Article  CAS  PubMed  Google Scholar 

  17. Clark BJ, Bull TM, Benson AB, Stream AR, Macht M, Gaydos J et al (2013) Growth differentiation factor-15 and prognosis in acute respiratory distress syndrome: a retrospective cohort study. Critical care (London, England) 17(3):R92–R92. https://doi.org/10.1186/cc12737

    Article  Google Scholar 

  18. Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, Cimino I, Yang M, Welsh P, Virtue S, Goldspink DA, Miedzybrodzka EL, Konopka AR, Esponda RR, Huang JTJ, Tung YCL, Rodriguez-Cuenca S, Tomaz RA, Harding HP, Melvin A, Yeo GSH, Preiss D, Vidal-Puig A, Vallier L, Nair KS, Wareham NJ, Ron D, Gribble FM, Reimann F, Sattar N, Savage DB, Allan BB, O’Rahilly S (2019) GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578(7795):444–448. https://doi.org/10.1038/s41586-019-1911-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conte M, Ostan R, Fabbri C, Santoro A, Guidarelli G, Vitale et al (2018) Human aging and longevity are characterized by high levels of mitokines. Journals of Gerontology: Series A 74(5):600–607. https://doi.org/10.1093/gerona/gly153

    Article  CAS  Google Scholar 

  20. Corre J, Labat E, Espagnolle N, Hébraud B, Avet-Loiseau H, Roussel M et al (2012) Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma. Cancer Res 72(6):1395–1406. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  21. Davis RL, Liang C, Sue CM (2016) A comparison of current serum biomarkers as diagnostic indicators of mitochondrial diseases. Neurology 86(21):2010–2015. https://doi.org/10.1212/WNL.0000000000002705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature 425(6958):577–584. https://doi.org/10.1038/nature02006

    Article  CAS  PubMed  Google Scholar 

  23. Emmerson PJ, Duffin KL, Chintharlapalli S, Wu X (2018) GDF15 and growth control. Frontiers in physiology 9:1712. https://doi.org/10.3389/fphys.2018.01712

    Article  PubMed  PubMed Central  Google Scholar 

  24. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD et al (2017) The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med 23(10):1215–1219. https://doi.org/10.1038/nm.4393

    Article  CAS  PubMed  Google Scholar 

  25. Engel ME, McDonnell MA, Law BK, Moses HL (1999) Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 274(52):37413–37420. https://doi.org/10.1074/jbc.274.52.37413

    Article  CAS  PubMed  Google Scholar 

  26. Fairlie WD, Zhang HP, Wu WM, Pankhurst SL, Bauskin AR, Russell PK, Brown PK, Breit SN (2001) The propeptide of the transforming growth factor-beta superfamily member, macrophage inhibitory cytokine-1 (MIC-1), is a multifunctional domain that can facilitate protein folding and secretion. J Biol Chem 276(20):16911–16918. https://doi.org/10.1074/jbc

    Article  PubMed  Google Scholar 

  27. Falk S, Wurdak H, Ittner LM, Ille F, Sumara G, Schmid MT, Draganova K, Lang KS, Paratore C, Leveen P, Suter U, Karlsson S, Born W, Ricci R, Götz M, Sommer L (2008) Brain area-specific effect of TGF-β signaling on Wnt-dependent neural stem cell expansion. Cell Stem Cell 2(5):472–483. https://doi.org/10.1016/j.stem.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  28. Fejzo MS, Sazonova OV, Sathirapongsasuti JF, Hallgrimsdottir IB, Vacic V, MacGibbon KW (2018) Placenta and appetite genes GDF15 and IGFBP7 are associated with hyperemesis gravidarum. Nat Commun 9:1178. https://doi.org/10.1038/s41467-018-03258-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M (2016) Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr Gerontol Int 16:17–29. https://doi.org/10.1111/ggi.12724

    Article  PubMed  Google Scholar 

  30. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochim Biophys Acta Mol basis Dis 1782(4):197–228. https://doi.org/10.1016/j.bbadis.2008.01.006

    Article  CAS  Google Scholar 

  31. Han M, Dai D, Yousafzai NA, Wang F, Wang H, Zhou Q et al (2017) CXXC4 activates apoptosis through up-regulating GDF15 in gastric cancer. Oncotarget 8(61):103557–103567. https://doi.org/10.18632/oncotarget.21581

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signaling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465–471. https://doi.org/10.1038/37284

    Article  CAS  PubMed  Google Scholar 

  33. Hromas R, Hufford M, Sutton J, Xu D, Li Y, Lu L (1997) PLAB, a novel placental bone morphogenetic protein. Biochim Biophys Acta 1354(1):40–44. https://doi.org/10.1016/S0167-4781(97)00122-X

    Article  CAS  PubMed  Google Scholar 

  34. Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA, Higbee J, Kutach A, Joo W, Gao Z, Fu D, To C, Mondal K, Li B, Kekatpure A, Wang M, Laird T, Horner G, Chan J, McEntee M, Lopez M, Lakshminarasimhan D, White A, Wang SP, Yao J, Yie J, Matern H, Solloway M, Haldankar R, Parsons T, Tang J, Shen WD, Alice Chen Y, Tian H, Allan BB (2017) Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550(7675):255–259. https://doi.org/10.1038/nature24042

    Article  CAS  PubMed  Google Scholar 

  35. Ito T, Nakanishi Y, Yamaji N, Murakami S, Schaffer SW (2018) Induction of growth differentiation factor 15 in skeletal muscle of old Taurine transporter knockout mouse. Biol Pharm Bull 41(3):435–439. https://doi.org/10.1248/bpb.b17-00969

    Article  CAS  PubMed  Google Scholar 

  36. Jiang J, Thalamuthu A, Ho JE, Mahajan A, Ek WE, Brown DA et al (2018) A meta-analysis of genome-wide association studies of growth differentiation factor-15 concentration in blood.(Report). Frontiers in Genetics 9. https://doi.org/10.3389/fgene.2018.00097

  37. Jiang J, Wen W, Sachdev PS (2016) Macrophage inhibitory cytokine-1/growth differentiation factor 15 as a marker of cognitive ageing and dementia. Curr Opin Psychiatry 29(2):181–186. https://doi.org/10.1097/yco.0000000000000225

    Article  PubMed  Google Scholar 

  38. Kempf T, Bjorklund E, Olofsson S, Lindahl B, Allhoff T, Peter T, Tongers J, Wollert KC, Wallentin L (2007) Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur Heart J 28(23):2858–2865. https://doi.org/10.1093/eurheartj/ehm465

    Article  CAS  PubMed  Google Scholar 

  39. Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J et al (2006) The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 98(3):351–360. https://doi.org/10.1161/01.RES.0000202805.73038.48

    Article  CAS  PubMed  Google Scholar 

  40. Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, Bolomini-Vittori M, Korf-Klingebiel M, Napp LC, Hansen B, Kanwischer A, Bavendiek U, Beutel G, Hapke M, Sauer MG, Laudanna C, Hogg N, Vestweber D, Wollert KC (2011) GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 17(5):581–588. https://doi.org/10.1038/nm.2354

    Article  CAS  PubMed  Google Scholar 

  41. Kim KH, Kim SH, Han DH, Jo YS, Lee YH, Lee MS (2018) Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice. Scientific Reports 8(1). https://doi.org/10.1038/s41598-018-25098-0

  42. Kim Y, Noren Hooten N, Evans MK (2018) CRP stimulates GDF15 expression in endothelial cells through p53. Mediat Inflamm 2018:1–9. https://doi.org/10.1155/2018/8278039

    Article  CAS  Google Scholar 

  43. Lambert JR, Whitson RJ, Iczkowski KA, La Rosa FG, Smith ML, Wilson RS et al (2015) Reduced expression of GDF-15 is associated with atrophic inflammatory lesions of the prostate. Prostate 75(3):255–265. https://doi.org/10.1002/pros.22911

    Article  CAS  PubMed  Google Scholar 

  44. Lamouille S, Derynck R (2007) Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 178(3):437–451. https://doi.org/10.1083/jcb.200611146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lawton LN, Bonaldo MF, Jelenc PC, Qiu L, Baumes SA, Marcelino RA et al (1997) Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta. Gene 203(1):17–26. https://doi.org/10.1016/s0378-1119(97)00485-x

    Article  CAS  PubMed  Google Scholar 

  46. Lerner L, Tao J, Liu Q, Nicoletti R, Feng B, Krieger B, Mazsa E, Siddiquee Z, Wang R, Huang L, Shen L, Lin J, Vigano A, Chiu MI, Weng Z, Winston W, Weiler S, Gyuris J (2016) MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J Cachexia Sarcopenia Muscle 7(4):467–482. https://doi.org/10.1002/jcsm.12077

    Article  PubMed  Google Scholar 

  47. Li JJ, Liu J, Lupino K, Liu X, Zhang L, Pei L (2018) Growth differentiation factor 15 maturation requires proteolytic cleavage by PCSK3, -5, and -6. Mol Cell Biol 38(21). https://doi.org/10.1128/mcb.00249-18

  48. Li S, Ma YM, Zheng PS, Zhang P (2018) GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Cancer Res 37(1):80. https://doi.org/10.1186/s13046-018-0744-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu DD, Lu JM, Zhao QR, Hu C, Mei YA (2016) Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels. Sci Rep 6:28653. https://doi.org/10.1038/srep28653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lockhart SM, Saudek V, O’Rahilly S (2020) GDF15: a hormone conveying somatic distress to the brain. Endocrine Reviews. https://doi.org/10.1210/endrev/bnaa007

  51. Lu JM, Wang CY, Hu C, Fang YJ, Mei YA (2016) GDF-15 enhances intracellular Ca2+ by increasing Cav1.3 expression in rat cerebellar granule neurons. Biochem J 473(13):1895–1904. https://doi.org/10.1042/BCJ20160362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma J, Tang X, Sun W, Liu Y, Tan Y, Ma HL et al (2016) Mutant GDF15 presents a poor prognostic outcome for patients with oral squamous cell carcinoma. Oncotarget 7(2):2113–2122. https://doi.org/10.18632/oncotarget.6017

    Article  PubMed  Google Scholar 

  53. Machado V, Haas SJ, von Bohlen Und Halbach O, Wree A, Krieglstein K, Unsicker K, Spittau B (2016) Growth/differentiation factor-15 deficiency compromises dopaminergic neuron survival and microglial response in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiol Dis 88:1–15. https://doi.org/10.1016/j.nbd.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  54. Macia L, Tsai VW, Nguyen AD, Johnen H, Kuffner T, Shi YC et al (2012) Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS One 7(4):e34868. https://doi.org/10.1371/journal.pone.0034868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maetzler W, Deleersnijder W, Hanssens V, Bernard A, Brockmann K, Marquetand J, Wurster I, Rattay TW, Roncoroni L, Schaeffer E, Lerche S, Apel A, Deuschle C, Berg D (2016) GDF15/MIC1 and MMP9 cerebrospinal fluid levels in Parkinson’s disease and Lewy body dementia. PLoS One 11(3):e0149349. https://doi.org/10.1371/journal.pone.0149349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Malhotra N, Kang J (2013) SMAD regulatory networks construct a balanced immune system. Immunology 139(1):1–10. https://doi.org/10.1111/imm.12076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marjono AB, Brown DA, Horton KE, Wallace EM, Breit SN, Manuelpillai U (2003) Macrophage inhibitory cytokine-1 in gestational tissues and maternal serum in normal and pre-eclamptic pregnancy. Placenta 24(1):100–106. https://doi.org/10.1053/plac.2002.0881

    Article  CAS  PubMed  Google Scholar 

  58. Massague J (2008) TGFbeta in Cancer. Cell 134(2):215–230. https://doi.org/10.1016/j.cell.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Massague J (2012) TGFbeta signaling in context. Nat Rev Mol Cell Biol 13(10):616–630. https://doi.org/10.1038/nrm3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maximilian K, Christoffer C, Kim AS, Christian Strini C, Jacob Fuglsbjerg J, Jørgen FPW et al (2018) Exercise increases circulating GDF15 in humans. Molecular Metabolism 9:187–191. https://doi.org/10.1016/j.molmet.2017.12.016

    Article  CAS  Google Scholar 

  61. Mazagova M, Buikema H, van Buiten A, Duin M, Goris M, Sandovici M, Henning RH, Deelman LE (2013) Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes. Am J Physiol Renal Physiol 305(9):F1249–F1264. https://doi.org/10.1152/ajprenal.00387.2013

    Article  CAS  PubMed  Google Scholar 

  62. Mimeault M, Batra SK (2010) Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer. J Cell Physiol 224(3):626–635. https://doi.org/10.1002/jcp.22196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Min KW, Liggett JL, Silva G, Wu WW, Wang R, Shen RF, Eling TE, Baek SJ (2016) NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene 35(3):377–388. https://doi.org/10.1038/onc.2015.95

    Article  CAS  PubMed  Google Scholar 

  64. Moore AG, Brown DA, Fairlie WD, Bauskin AR, Brown PK, Munier ML et al (2000) The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women. J Clin Endocrinol Metab 85(12):4781–4788. https://doi.org/10.1210/jcem.85.12.7007

    Article  CAS  PubMed  Google Scholar 

  65. Morikawa M, Derynck R, Miyazono K (2016) TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8(5). https://doi.org/10.1101/cshperspect.a021873

  66. Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res 347(1):11–20. https://doi.org/10.1007/s00441-011-1201-y

    Article  CAS  PubMed  Google Scholar 

  67. Mueller TD, Nickel J (2012) Promiscuity and specificity in BMP receptor activation. FEBS Lett 586(14):1846–1859. https://doi.org/10.1016/j.febslet.2012.02.043

    Article  CAS  PubMed  Google Scholar 

  68. Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, Beck SC, South VJ, Dinh TQ, Cash-Mason TD, Cavanaugh CR, Nelson S, Huang C, Hunter MJ, Rangwala SM (2017) GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med 23(10):1150–1157. https://doi.org/10.1038/nm.4392

    Article  CAS  PubMed  Google Scholar 

  69. Mullican SE, Rangwala SM (2018) Uniting GDF15 and GFRAL: therapeutic opportunities in obesity and beyond. Trends in Endocrinology & Metabolism 29(8):560–570. https://doi.org/10.1016/j.tem.2018.05.002

    Article  CAS  Google Scholar 

  70. Nair V, Robinson-Cohen C, Smith MR, Bellovich KA, Bhat ZY, Bobadilla M, Brosius F, de Boer IH, Essioux L, Formentini I, Gadegbeku CA, Gipson D, Hawkins J, Himmelfarb J, Kestenbaum B, Kretzler M, Magnone MC, Perumal K, Steigerwalt S, Ju W, Bansal N (2017) Growth differentiation factor-15 and risk of CKD progression. J Am Soc Nephrol 28(7):2233–2240. https://doi.org/10.1681/asn.2016080919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ost M, Igual Gil C, Coleman V, Keipert S, Efstathiou S, Vidic V, Weyers M, Klaus S (2020) Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress. EMBO reports 21(3). https://doi.org/10.15252/embr.201948804

  72. Paralkar VM, Vail AL, Grasser WA, Brown TA, Xu H, Vukicevic S, Ke HZ, Qi H, Owen TA, Thompson DD (1998) Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family. J Biol Chem 273(22):13760–13767. https://doi.org/10.1074/jbc.273.22.13760

    Article  CAS  PubMed  Google Scholar 

  73. Patel S, Alvarez-Guaita A, Melvin A, Rimmington D, Dattilo A, Miedzybrodzka EL et al (2019) GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metab 29(3):707–718.e708. https://doi.org/10.1016/j.cmet.2018.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roth P, Tabatabai G, Weller M, Tritschler I, Wick W, Wischhusen J et al (2010) GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res 16(15):3851–3859. https://doi.org/10.1158/1078-0432.CCR-10-0705

    Article  CAS  PubMed  Google Scholar 

  75. Santibañez JF, Quintanilla M, Bernabeu C (2011) TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci 121(6):233–251. https://doi.org/10.1042/cs20110086

    Article  PubMed  Google Scholar 

  76. Sasahara A, Tominaga K, Nishimura T, Yano M, Kiyokawa E, Noguchi M et al (2017) An autocrine/paracrine circuit of growth differentiation factor (GDF) 15 has a role for maintenance of breast cancer stemlike cells. Oncotarget 8(15):24869–24881. https://doi.org/10.18632/oncotarget.15276

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schober A, Böttner M, Strelau J, Kinscherf R, Bonaterra GA, Barth M, Schilling L, Fairlie WD, Breit SN, Unsicker K (2001) Expression of growth differentiation factor-15/ macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in the perinatal, adult, and injured rat brain. J Comp Neurol 439(1):32–45. https://doi.org/10.1002/cne.1333

    Article  CAS  PubMed  Google Scholar 

  78. Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, Springer TA (2011) Latent TGF-beta structure and activation. Nature 474(7351):343–349. https://doi.org/10.1038/nature10152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Strelau J, Strzelczyk A, Rusu P, Bendner G, Wiese S, Diella F, Altick AL, von Bartheld CS, Klein R, Sendtner M, Unsicker K (2009) Progressive postnatal motoneuron loss in mice lacking GDF-15. J Neurosci 29(43):13640–13648. https://doi.org/10.1523/JNEUROSCI.1133-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Strelau J, Sullivan A, Bottner M, Lingor P, Falkenstein E, Suter-Crazzolara C et al (2000) Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic neurons in vivo. J Neurosci 20(23):8597–8603. https://doi.org/10.1523/JNEUROSCI.20-23-08597.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G, Semba RD, Ferrucci L (2018) Plasma proteomic signature of age in healthy humans. Aging Cell 17(5):e12799. https://doi.org/10.1111/acel.12799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang, H., Inoki, K., Brooks, S. V., Okazawa, H., Lee, M., Wang, J., , … Shrager, J. B. (2019). mTORC1 underlies age-related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell, 18(3), e12943. https://doi.org/10.1111/acel.12943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tanno T, Noel P, Miller JL (2010) Growth differentiation factor 15 in erythroid health and disease. Curr Opin Hematol 17(3):184–190. https://doi.org/10.1097/MOH.0b013e328337b52f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tran T, Yang J, Gardner J, Xiong Y (2018) GDF15 deficiency promotes high fat diet-induced obesity in mice. PLoS One 13(8):e0201584. https://doi.org/10.1371/journal.pone.0201584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tsai VW, Macia L, Johnen H, Kuffner T, Manadhar R, Jorgensen SB et al (2013) TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS One 8(2):e55174. https://doi.org/10.1371/journal.pone.0055174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsai VW, Macia L, Feinle-Bisset C, Manandhar R, Astrup A, Raben A et al (2015) Serum levels of human MIC-1/GDF15 vary in a diurnal pattern, do not display a profile suggestive of a satiety factor and are related to BMI. PLoS One 10(7):e0133362. https://doi.org/10.1371/journal.pone.0133362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsai VW, Zhang HP, Manandhar R, Lee-Ng KKM, Lebhar H, Marquis CP, Husaini Y, Sainsbury A, Brown DA, Breit SN (2018) Treatment with the TGF-b superfamily cytokine MIC-1/GDF15 reduces the adiposity and corrects the metabolic dysfunction of mice with diet-induced obesity. Int J Obes 42(3):561–571. https://doi.org/10.1038/ijo.2017.258

    Article  CAS  Google Scholar 

  88. Tsui KH, Hsu SY, Chung LC, Lin YH, Feng TH, Lee TY, Chang PL, Juang HH (2015) Growth differentiation factor-15: a p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells. Sci Rep 5:12870. https://doi.org/10.1038/srep12870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Unal B, Alan S, Bassorgun CI, Karakas AA, Elpek GO, Ciftcioglu MA (2015) The divergent roles of growth differentiation factor-15 (GDF-15) in benign and malignant skin pathologies. Arch Dermatol Res 307(7):551–557. https://doi.org/10.1007/s00403-015-1546-2

    Article  CAS  PubMed  Google Scholar 

  90. Wakefield LM, Hill CS (2013) Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer 13(5):328–341. https://doi.org/10.1038/nrc3500

    Article  CAS  PubMed  Google Scholar 

  91. Wang X, Baek SJ, Eling TE (2013) The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochem Pharmacol 85(5):597–606. https://doi.org/10.1016/j.bcp.2012.11.025

    Article  CAS  PubMed  Google Scholar 

  92. Wang W, Yang X, Dai J, Lu Y, Zhang J, Keller ET (2019) Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene. 38:4540–4559. https://doi.org/10.1038/s41388-019-0736-3

    Article  CAS  PubMed  Google Scholar 

  93. Weiss, A., & Attisano, L. (2013). The TGFbeta superfamily signaling pathway. In (Vol. 2, pp. 47-63). Hoboken, USA. https://doi.org/10.1002/wdev.86

  94. Wischhusen J, Melero I, Fridman WH (2020) Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.00951

  95. Wollmann W, Goodman ML, Bhat-Nakshatri P, Kishimoto H, Goulet RJ Jr, Mehrotra S, Morimiya A, Badve S, Nakshatri H (2005) The macrophage inhibitory cytokine integrates AKT/PKB and MAP kinase signaling pathways in breast cancer cells. Carcinogenesis 26(5):900–907. https://doi.org/10.1093/carcin/bgi031

    Article  CAS  PubMed  Google Scholar 

  96. Wrana JL, Attisano L, Wieser R, Ventura F, Massague J (1994) Mechanism of activation of the TGF-beta receptor. Nature 370(6488):341–347. https://doi.org/10.1038/370341a0

    Article  CAS  PubMed  Google Scholar 

  97. Xiong Y, Walker K, Min X, Hale C, Tran T, Komorowski R, Yang J, Davda J, Nuanmanee N, Kemp D, Wang X, Liu H, Miller S, Lee KJ, Wang Z, Véniant MM (2017) Long-acting MIC-1/GDF15 molecules to treat obesity: evidence from mice to monkeys. Sci Transl Med 9(412):eaan8732. https://doi.org/10.1126/scitranslmed.aan8732

    Article  CAS  PubMed  Google Scholar 

  98. Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X (2018) Transforming growth factor-beta in stem cells and tissue homeostasis. Bone Res 6:2. https://doi.org/10.1038/s41413-017-0005-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu XY, Nie Y, Wang FF, Bai Y, Lv ZZ, Zhang YY, Li ZJ, Gao W (2014) Growth differentiation factor (GDF)-15 blocks norepinephrine-induced myocardial hypertrophy via a novel pathway involving inhibition of epidermal growth factor receptor transactivation. J Biol Chem 289(14):10084–10094. https://doi.org/10.1074/jbc.M113.516278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang H, Filipovic Z, Brown D, Breit SN, Vassilev LT (2003) Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther 2(10):1023–1029

    CAS  PubMed  Google Scholar 

  101. Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjaer SB et al (2017) GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med 23(10):1158–1166. https://doi.org/10.1038/nm.4394

    Article  CAS  PubMed  Google Scholar 

  102. Yi MH, Zhang E, Baek H, Kim S, Shin N, Kang JW, Lee S, Oh SH, Kim DW (2015) Growth differentiation factor 15 expression in astrocytes after excitotoxic lesion in the mouse hippocampus. Exp Neurobiol 24(2):133–138. https://doi.org/10.5607/en.2015.24.2.133

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yu L, Hebert MC, Zhang YE (2002) TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 21(14):3749–3759. https://doi.org/10.1093/emboj/cdf366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yuan Z, Li H, Qi Q, Gong W, Qian C, Dong R, Zang Y, Li J, Zhou M, Cai J, Wang Z, Chen A, Ye X, Zhao Q (2016) Plasma levels of growth differentiation factor-15 are associated with myocardial injury in patients undergoing off-pump coronary artery bypass grafting. Sci Rep 6:28221. https://doi.org/10.1038/srep28221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang H, Zhang W, Tu X, Niu Y, Li X, Qin L et al (2017) Elevated serum growth differentiation factor 15 levels are associated with thyroid nodules in type 2 diabetes aged over 60 years. Oncotarget 8(25):41379–41386. https://doi.org/10.18632/oncotarget.17328

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang, J., Zhang, X., Xie, F., Zhang, Z., Dam, H. V., Zhang, L., & Zhou, F. (2014). The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein & Cell, 5(7), 503–517doi: https://doi.org/10.1007/s13238-014-0058-8

  107. Zhang L, Zhou F, ten Dijke P (2013) Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer. Trends in biochemical sciences 38(12):612–620. https://doi.org/10.1016/j.tibs.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Y, Moszczynski LA, Liu Q, Jiang J, Zhao D, Quan D et al (2017) Over-expression of growth differentiation factor 15 (GDF15) preventing cold ischemia reperfusion (I/R) injury in heart transplantation through Foxo3a signaling. Oncotarget 8(22):36531–36544. https://doi.org/10.18632/oncotarget.16607

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhang Y, Zhang G, Liu Y, Chen R, Zhao D, McAlister V, Mele T, Liu K, Zheng X (2018) GDF15 regulates Malat-1 circular RNA and inactivates NFκB signaling leading to immune tolerogenic DCs for preventing alloimmune rejection in heart transplantation. Front Immunol 9:2407–2407. https://doi.org/10.3389/fimmu.2018.02407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang Z, Wu L, Wang J, Li G, Feng D, Zhang B, Li L, Yang J, Ma L, Qin H (2014) Opposing effects of PI3K/Akt and Smad-dependent signaling pathways in NAG-1-induced glioblastoma cell apoptosis. PLoS One 9(4):e96283. https://doi.org/10.1371/journal.pone.0096283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao J, Li M, Chen Y, Zhang S, Ying H, Song Z, Lu Y, Li X, Xiong X, Jiang J (2019) Elevated serum growth differentiation factor 15 levels in hyperthyroid patients. Front Endocrinol 9:793. https://doi.org/10.3389/fendo.2018.00793

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Hart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assadi, A., Zahabi, A. & Hart, R.A. GDF15, an update of the physiological and pathological roles it plays: a review. Pflugers Arch - Eur J Physiol 472, 1535–1546 (2020). https://doi.org/10.1007/s00424-020-02459-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02459-1

Keywords

Navigation