Skip to main content
Log in

Low voltage-activated channels in rat pulmonary vein cardiomyocytes: coexistence of a non-selective cationic channel and of T-type Ca channels

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In rat pulmonary vein (PV) cardiomyocytes (CM), norepinephrine (NE) induces an automatic activity consisting of bursts of slow action potentials which depend on Ca2+ (upstroke) and Na+ (inter-burst) channels. Our objective was to characterize low voltage-activated (LVA) currents in rat PVCM susceptible to trigger this activity. Whole-cell ICa (5 mM Ca2+) was recorded from − 100 mV with classical Na+- and K+-free solutions. A fast LVA ICa (FLVA-ICa), present in ≈ 56% of PVCM between ~ − 50 to − 20 mV, was blocked by 10 μM TTX and markedly increased by addition of NaCl (1 or 3 mM) or KCl (5 or 10 mM). Permeability ratios P′Ca/PNa and P′Ca/PK calculated for bi-ionic conditions were respectively 2.25 ± 0.51 and 1.88 ± 0.25, and not different from a value of 2. FLVA-ICa was increased by 10 μM NE and 300 nM BayK8644, decreased by 5 μM nifedipine but not blocked by ranolazine (10 μM). NiCl2 (40 μM) and TTA-A2 (10 or 100 nM) increased FLVA-ICa. Similar results were obtained in left atrial (LA) CM. Neither Ba2+ nor Sr2+ alone could permeate the FLVA channel or block Ca2+ influx but revealed a large slower activating and inactivating LVA Ca2+ current (SLVA-ICa), present in 10 out of 80 PVCM, absent in LACM, and partially inhibited by 100 nM TTA-A2. Therefore, the ionic channel underlying FLVA-ICa is likely a fast voltage-gated non-selective channel with a dihydropyridine binding site. SLVA-ICa might correspond to Ca2+ influx through Cav3.x channels and contribute to triggering NE-induced automatic activity in the PV myocardial sleeve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CM:

Cardiomyocytes

FLVA:

Fast low voltage-activated

FSLVA:

Fast activating and slow inactivating low voltage-activated

ICa :

Calcium current

INa :

Sodium current

LA:

Left atria

LVA:

Low voltage-activated

NE:

Norepinephrine

PV:

Pulmonary vein

SLVA:

Slow low voltage-activated

TTX:

Tetrodotoxin

References

  1. Aggarwal R, Shorofsky SR, Goldman L, Balke CW (1997) Tetrodotoxin-blockable calcium currents in rat ventricular myocytes; a third type of cardiac cell sodium current. J Physiol 505:353–369. https://doi.org/10.1111/j.1469-7793.1997.353bb.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akaike N, Takahashi K (1992) Tetrodotoxin-sensitive calcium-conducting channels in the rat hippocampal CA1 region. J Physiol 450:529–546. https://doi.org/10.1113/jphysiol.1992.sp019141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alvarez J, Salinas-Stefanon E, Orta G, Ferrer T, Talavera K, Galan L, Vassort G (2004) Occurrence of a tetrodotoxin-sensitive calcium current in rat ventricular myocytes after long-term myocardial infarction. Cardiovasc Res 63:653–661. https://doi.org/10.1016/j.cardiores.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  4. Arentz T, Haegeli L, Sanders P, Weber R, Neumann FJ, Kalusche D, Haïssaguerre M (2007) High-density mapping of spontaneous pulmonary vein activity initiating atrial fibrillation in humans. J Cardiovasc Electrophysiol 18:31–38. https://doi.org/10.1111/j.1540-8167.2006.00682.x

    Article  PubMed  Google Scholar 

  5. Bodi I, Nakayama H, Schwartz A (2016) Tetrodotoxin-sensitive Ca2+ currents, but no T-type currents in normal, hypertrophied, and failing mouse cardiomyocytes. J Cardiovasc Pharmacol 68:452–434. https://doi.org/10.1097/FJC.0000000000000432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bredeloux P, Aguettaz E, Findlay I, Maupoil V (2012). Contribution of calcium to the catecholaminergic automatic activity of rat pulmonary veins. Arch Cardiovasc Dis Suppl. 2:42 (Abstract 0179).

  7. Cain SM, Snutch TP (2010) Contributions of T-type calcium channels isoforms to neuronal firing. Channels 4:475–482. https://doi.org/10.4161/chan.4.6.14106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chemin J, Monteil A, Perez-Reyes E, Bourinet E, Nargeot J, Lory P (2002) Specific contribution of human T-type calcium channel isotypes (α1G, α1H and α1I) to neuronal excitability. J Physiol 540:3–14. https://doi.org/10.1113/jphysiol.2001.013269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen-Izu Y, Sha Q, Shorofsky SR, Robinson SW, Wier WG, Goldman L, Balke CW (2001) ICa(TTX) channels are distinct from those generating the classical Na+ current. Biophys J 81:2647–2659. https://doi.org/10.1116/S0006-3495(01)75908-5

  10. Cole WC, Chartier D, Martin M, Leblanc N (1997) Ca2+ permeation through Na+ channels in 0.guinea pig ventricular myocytes. Am J Phys 273:H128–H137. https://doi.org/10.1152/ajpheart.1997.273.1.H128

    Article  CAS  Google Scholar 

  11. de Almeida OP, Böhm GM, Carvalho MP, de Carvalho AP (1975) The cardiac muscle in the pulmonary vein of the rat: a morphological and electrophysiological study. J Morphol 145:409–434. https://doi.org/10.1002/jmor.1051450403

    Article  Google Scholar 

  12. Doisne N, Maupoil V, Cosnay P, Findlay I (2009) Catecholaminergic automatic activity in the rat pulmonary vein: electrophysiological differences between cardiac muscle in the left atrium and pulmonary vein. Am J Physiol Heart Circ Physiol 297:H102–H108. https://doi.org/10.1152/ajpheart.00256.2009

    Article  CAS  PubMed  Google Scholar 

  13. Ehrlich JR, Cha TJ, Zhang L, Chartier D, Melnyk P, Hohnloser SH, Nattel S (2003) Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol 551:801–813. https://doi.org/10.1113/jphysiol.2003.046417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Favre I, Moczydlowski E, Schild L (1996) On the structural basis for ionis selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J 71:3110–3125. https://doi.org/10.1016/S0006-3495(96)79505-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fedida D, Noble D, Spindler AJ (1988) Mechanism of the use-dependence of Ca2+ current in guinea-pig myocytes. J Physiol 405:461–475. https://doi.org/10.1113/jphysiol.1988.sp017342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guatimosim S, Sobie EA, Dos Santo CJ, Martin LA, Lederer WJ (2001) Molecular identification of a TTX-sensitive Ca2+ current. Am J Phys Cell Phys 280:C1327–C1339. https://doi.org/10.1152/ajpcell.2001.280.5.C1327

    Article  CAS  Google Scholar 

  17. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Métayer P, Clémenty J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666. https://doi.org/10.1056/NEJM199809033391003

    Article  PubMed  Google Scholar 

  18. Heubach JF, Köhler A, Wettwer E, Ravens U (2000) T-type and tetrodotoxin-sensitive Ca2+ currents coexist in guinea pig ventricular myocytes and are both blocked by mibefradil. Circ Res 86:628–635. https://doi.org/10.1161/01.RES.86.6.628

    Article  CAS  PubMed  Google Scholar 

  19. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc., Sunderland MA

    Google Scholar 

  20. Hosoyamada Y, Ichimura K, Koizumi K, Sakai T (2010) Structural organization of pulmonary veins in the rat lung, with special emphasis on the musculature consisting of cardiac and smooth muscles. Anat Sci Int 85:152–159. https://doi.org/10.1007/s12565-009-0071-9

    Article  PubMed  Google Scholar 

  21. Klavins JV (1963) Demonstration of striated muscle in the pulmonary veins of the rat. J Anat, Lond 97:239–241

    CAS  PubMed  Google Scholar 

  22. Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klöckner U, Schneider T, Perez-Reyes E (1999) Cloning and expresssion of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19:1912–1921. https://doi.org/10.1523/JNEUROSCI.19-06-01912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lemaire S, Piot C, Seguin J, Nargeot J, Richard S (1995) Tetrodotoxin-sensitive Ca2+ and Ba2+ currents in human atrial cells. Recept Channels 3:71–81

    CAS  PubMed  Google Scholar 

  24. Leuranguer V, Monteil A, Bourinet E, Dayanithi G, Nargeot J (2000) T-type calcium currents in rat cardiomyocytes during postnatal development: contribution to hormone secretion. Am J Physiol Heart Circ Physiol 279:H2540–H2548. https://doi.org/10.1152/ajpheart.2000.279.5.H2540

    Article  CAS  PubMed  Google Scholar 

  25. Lewis CA (1979) Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol 286:417–445. https://doi.org/10.1113/jphysiol.1979.sp012629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mahida S, Sacher F, Derval N, Berte B, Yamashita S, Hooks D, Denis A, Amraoui S, Hocini M, Haissaguerre M, Jais P (2015) Science linking pulmonary veins and atrial fibrillation. Arrhythmia Electrophysiol Rev 4:40–43. https://doi.org/10.15420/aer.2015.4.1.40

    Article  Google Scholar 

  27. Malécot CO, Bredeloux P, Findlay I, Maupoil V (2015) A TTX-sensitive resting Na+ permeability contributes to the catecholaminergic automatic activity in rat pulmonary vein. J Cardiovasc Electrophysiol 26:311–319. https://doi.org/10.1111/jce.12572

    Article  PubMed  Google Scholar 

  28. Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548. https://doi.org/10.1073/pnas.0935295100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maupoil V, Bronquard C, Freslon JL, Cosnay P, Findlay I (2007) Ectopic activity in the rat pulmonary vein can arise from simultaneous activation of alpha1- and beta1-adrenoceptors. Br J Pharmacol 150:899–905. https://doi.org/10.1038/sj.bjp.0707177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melnyk P, Ehrlich JR, Pourrier M, Villeneuve L, Cha TJ, Nattel S (2005) Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium. Cardiovasc Res 65:104–116. https://doi.org/10.1016/j.cardiores.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  31. Mesirca P, Torrente AG, Mangoni ME (2015) Functional role of voltage gated Ca2+ channels in heart automaticity. Front Physiol 6:19. https://doi.org/10.3389/fphys.2015.00019

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mueller-Hoecker J, Beitinger F, Fernandez B, Bahlmann O, Assmann G, Troidl C, Dimomeletis I, Kääb S, Deindl E (2008) Of rodents and humans: a light microscopic and ultrastructural study on cardiomyocytes in pulmonary veins. Int J Med Sci 5:152–158. https://doi.org/10.7150/ijms.5.152

  33. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gating of TRP channels: a voltage connection? J Physiol 567(1):35–44. https://doi.org/10.1113/jphysiol.2005.088377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pasqualin C, Yu A, Malécot CO, Gannier F, Cognard C, Godin-Ribuot D, Morand J, Bredeloux P, Maupoil V (2018) Structural heterogeneity of the rat pulmonary vein myocardium: consequences on intracellular calcium dynamics and arrhythmogenic potential. Sci Rep 8:3244. https://doi.org/10.1038/s41598-018-21671-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pasqualin C, Guilloteau C, Gannier F, Peineau N, Bredeloux P, Maupoil V (2019) Mapping of the catecholaminergic automatic activity from its foci within the pulmonary veins to the left atria in rat. Arch Cardiovasc Dis Suppl 11:267. (Abstract 529). https://doi.org/10.1016/j.acvdsp.2019.02.181

    Article  Google Scholar 

  36. Pidoplichko VI (1986) Two different tetrodotoxin-separable inward sodium currents in the membrane of isolated cardiomyocytes. Gen Physiol Biophys 6:593–604

    Google Scholar 

  37. Sha Q, Robinson SW, McCulle SL, Shorofsky SR, Welling PA, Goldman L, Balke CW (2003) An antisense oligonucleotide against H1 inhibits the classical sodium current but not ICa(TTX) in rat ventricular cells. J Physiol 547:435–440. https://doi.org/10.1113/jphysiol.2002.035246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun Y-M, Favre I, Schild L, Moczydlowski E (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effects of Alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol 110:693–715. https://doi.org/10.1085/jgp.110.6.693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takahashi K, Kameda H, Kataoka M, Ueno S, Akaike N (1992) Effects of Ca2+ antagonists and antiepileptics on tetrodotoxin-sensitive Ca2+-conducting channels in isolated rat hippocampal CA1 neurons. Neurosci Lett 148:60.62. https://doi.org/10.1016/0304-3940(92)90804G

    Article  Google Scholar 

  40. Wang W, Mellor RL, Nerbonne JM, Balke CW (2019) Regional differences in the expression of tetrodotoxin-sensitive inward Ca2+ and outward Cs+/K+ currents in mouse and human ventricles. Channels 13:72–87. https://doi.org/10.1080/19336950.2019.1568146

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhou W, Goldin AL (2004) Use-dependent potentiation of the Nav1.6 sodium channel. Biophys J 87:3862–3872. https://doi.org/10.1569/biophysj.104.045963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author is indebted to Dr Ian Findlay for helpful discussions and critical comments on the manuscript.

Funding

This work was financially supported by the University of Tours and the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire O. Malécot.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malécot, C.O. Low voltage-activated channels in rat pulmonary vein cardiomyocytes: coexistence of a non-selective cationic channel and of T-type Ca channels. Pflugers Arch - Eur J Physiol 472, 1019–1029 (2020). https://doi.org/10.1007/s00424-020-02413-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02413-1

Keywords

Subject codes

Navigation