Skip to main content
Log in

Ketoprofen alleviates diet-induced obesity and promotes white fat browning in mice via the activation of COX-2 through mTORC1-p38 signaling pathway

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The nonsteroidal anti-inflammatory drug (NSAID) ketoprofen is commonly used as a pain reliever, but its role in mediating the energy metabolism in lipids is unclear. This paper reports for the first time the critical role of ketoprofen in ameliorating white fat browning and alleviating diet-induced obesity. The effects of ketoprofen were evaluated using C57BL/6 mice fed a high fat diet and the expression levels of the target genes and proteins in the lipid metabolisms were determined by quantitative real-time PCR, immunoblot analysis, histopathology study, immunofluorescence, and molecular docking techniques. Ketoprofen induced browning in cultured 3T3-L1 white adipocytes and inguinal white adipose tissue by increasing the expression of core fat browning marker proteins as well as beige-specific genes through COX-2 activation. Ketoprofen also led to the robust activation of brown adipocytes and enhanced brown fat adipogenesis. In addition, ketoprofen elevated lipolysis, thereby increasing mitochondrial biogenesis resulting in higher fat oxidation. Furthermore, the molecular docking and mechanistic study demonstrated the recruitment of beige fat by ketoprofen via mTORC1-p38-mediated activation of the COX-2 pathway. Overall, these results indicate the unique role of ketoprofen in body weight reduction by enhancing thermogenesis, suggesting its therapeutic potential in the treatment of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACO:

Acyl-coenzyme A oxidase 1

β3-AR:

Beta 3 adrenergic receptor

ATGL:

Adipose triglyceride lipase

BAT:

Brown adipose tissue

Cd137 :

Gene encoding TNF Receptor Superfamily Member 9 protein

Cidea :

Gene encoding cell death-inducing DFFA-like effector a

Cited1 :

Gene encoding Cbp/p300-interacting transactivator 1 C/EBP/Cebp, CCAAT/enhancer-binding protein/encoding gene

COX-1/2/Cox1/2 :

Cyclooxygenase-1/2

COX-4/Cox4 :

Cytochrome C complex IV/encoding gene

CPT1:

Carnitine palmitoyltransferase 1

CYT-C:

Cytochrome C complex

HSL:

Hormone-sensitive lipase

Lhx8 :

Gene encoding LIM/homeobox protein Lhx8

iWAT:

Inguinal white adipose tissue

mTORC1:

Mammalian target of rapamycin complex 1

Nrf1 :

Gene encoding nuclear respiratory factor 1

p38:

p38 mitogen-activated protein kinase

p53/p53 :

Tumor protein/encoding gene

p38:

p38 mitogen-activated protein kinase

PG:

Prostaglandin

PGC-1α/Ppargc1α :

Peroxisome proliferator-activated receptor gamma co-activator 1-alpha/encoding gene

PKA:

Protein kinase A

PRDM16/Prdm16 :

PR domain-containing 16/encoding gene

Tbx1 :

Gene encoding T-box protein 1

Tfam :

Gene encoding mitochondrial transcription factor A

Tmem26 :

Gene encoding transmembrane protein 26

UCP1/Ucp1 :

Uncoupling protein 1/encoding gene

Zic1 :

Gene encoding zinc finger protein ZIC1.

References

  1. Casimir DA, Miller CW, Ntambi JM (1996) Preadipocyte differentiation blocked by prostaglandin stimulation of prostanoid FP2 receptor in murine 3T3-L1 cells. Differentiation 60:203–210

    CAS  PubMed  Google Scholar 

  2. Coll T, Palomer X, Blanco-Vaca F, Escolà-Gil JC, Sánchez RM, Laguna JC et al (2010) Cyclooxygenase 2 inhibition exacerbates palmitate-induced inflammation and insulin resistance in skeletal muscle cells. Endocrinology 151:537–548

    CAS  PubMed  Google Scholar 

  3. Concha F, Prado G, Quezada J, Ramirez A, Bravo N, Flores C et al (2019) Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Rev Endocr Metab Disord 20:161–171

    CAS  PubMed  Google Scholar 

  4. Danneskiold-Samsøe NB, Sonne SB, Larsen JM, Hansen AN, Fjære E, Isidor MS (2019) Overexpression of cyclooxygenase-2 in adipocytes reduces fat accumulation in inguinal white adipose tissue and hepatic statosis in high-fat fed mice. Sci Rep 9:8979

    Google Scholar 

  5. Davies NM, Sharkey KA, Asfaha S, Macnaughton WK, Wallace JL (1997) Aspirin causes rapid up-regulation of cyclo-oxygenase-2 expression in the stomach of rats. Aliment Pharmacol Ther 11:1101–1108

    CAS  PubMed  Google Scholar 

  6. Davis TW, Zweifel BS, O'Neal JM, Heuvelman DM, Abegg AL, Hendrich TO, Masferrer JL (2004) Inhibition of cyclooxygenase-2 by Celecoxib reverses tumor-induced wasting. J Pharmacol Exp Ther 308:929–934

    CAS  PubMed  Google Scholar 

  7. Fain JN, Ballou LR, Bahouth SW (2001) Obesity is induced in mice heterozygous for cyclooxygenase-2. Prostaglandins. Other Lipid Mediat 65:199–209

    CAS  Google Scholar 

  8. Francés DE, Motiño O, Agrá N, González-Rodríguez A, Fernández-Álvarez A, Cucarella C et al (2015) Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance. Diabetes. 64:1522–1531

    PubMed  Google Scholar 

  9. Frevel MAE, Bakheet T, Silva AM, Hissong JG, Khabar KSA, Williams BRG (2003) p38 mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol 23:425–436

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fulmer T (2010) Burning brown fat. Science-Business. eXchange 3:605

    Google Scholar 

  11. García-Alonso V, Clària J (2014) Prostaglandin E2 signals white-to-brown adipogenic differentiation. Adipocyte 3:290–296

    PubMed  PubMed Central  Google Scholar 

  12. García-Alonso V, López-Vicario C, Titos E, Morán-Salvador E, González-Périz A, Rius B (2013) Coordinate functional regulation between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator-activated receptor γ (PPARγ) in the conversion of white-to-brown adipocytes. J Biol Chem 288:28230–28242

    PubMed  PubMed Central  Google Scholar 

  13. García-Alonso V, Titos E, Alcaraz-Quiles J, Rius B, Lopategi A, López-Vicario C et al (2016) Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis. PLoS One 11:e0153751

    PubMed  PubMed Central  Google Scholar 

  14. Ghoshal S, Trivedi DB, Graf GA, Loftin CD (2011) Cyclooxygenase-2 deficiency attenuates adipose tissue differentiation and inflammation in mice. J Biol Chem 286:889–898

    CAS  PubMed  Google Scholar 

  15. Hsieh PS, Jin JS, Chiang CF, Chan PC, Chen CH, Shih KC (2009) COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity 17:1150–1157

    CAS  PubMed  Google Scholar 

  16. Hsieh PS, Lu KC, Chiang CF, Chen CH (2010) Suppressive effect of COX-2 inhibitor on the progression of adipose inflammation in high-fat-induced obese rats. Eur J Clin Investig 40:164–171

    CAS  Google Scholar 

  17. Hullin F, Raynal P, Ragab-Thomas JM, Fauvel J, Chap H (1989) Effect of dexamethasone on prostaglandin synthesis and on lipocortin status in human endothelial cells. Inhibition of prostaglandin I2 synthesis occurring without alteration of arachidonic acid liberation and of lipocortin synthesis. J Biol Chem 264:3506–3513

    CAS  PubMed  Google Scholar 

  18. Kaisanlahti A, Glumoff T (2019) Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem 75:1–10

    CAS  PubMed  Google Scholar 

  19. Kantor TG (1986) Ketoprofen: a review of its pharmacologic and clinical properties. Pharmacotherapy 6:93–103

    CAS  PubMed  Google Scholar 

  20. Labbé SM, Mouchiroud M, Caron A, Secco B, Freinkman E, Lamoureux G et al (2016) mTORC1 is required for brown adipose tissue recruitment and metabolic adaptation to cold. Sci Rep 6:37223

    PubMed  PubMed Central  Google Scholar 

  21. Lasa M, Brook M, Saklatvala J, Clark AR (2001) Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol 21:771–780

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu W, Poole EM, Ulrich CM, Kulmacz RJ (2013) Decreased cyclooxygenase inhibition by aspirin in polymorphic variants of human prostaglandin H synthase-1. Pharmacogenet Genomics 22:525–537

    Google Scholar 

  23. Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li JL et al (2016) Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning. J Clin Invest 126:1704–1716

    PubMed  PubMed Central  Google Scholar 

  24. Lundholm K, Daneryd P, Körner U, Hyltander A, Bosaeus I (2004) Evidence that long-term COX-treatment improves energy homeostasis and body composition in cancer patients with progressive cachexia. Int J Oncol 24:505–512

    CAS  PubMed  Google Scholar 

  25. Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I, Hao Q et al (2010) UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One 5:e11391

    PubMed  PubMed Central  Google Scholar 

  26. Mifflin RC, Saada JI, Di Mari JF, Valentich JD, Adegboyega PA, Powell DW (2004) Aspirin-mediated COX-2 transcript stabilization via sustained p38 activation in human intestinal myofibroblasts. Mol Pharmacol 65:470–478

    CAS  PubMed  Google Scholar 

  27. Mitchell JA, Kirkby SN (2019) Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol 176:1038–1050

    CAS  PubMed  Google Scholar 

  28. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  29. Okla M, Kim J, Koehler K, Chung S (2017) Dietary factors promoting brown and beige fat development and thermogenesis. Adv Nutr 8:473–483

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Paschos GK, Tang SY, Theken KN, Li X, Verginadis I, Lekkas D et al (2018) Cold-induced browning of inguinal white adipose tissue is independent of adipose tissue cyclooxygenase-2. Cell Rep 24:809–814

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rouzer CA, Marnett LJ (2009) Cyclooxygenases: structural and functional insights. J Lipid Res 50:S29–S34

    PubMed  PubMed Central  Google Scholar 

  32. Silvester AJ, Aseer KR, Yun JW (2019) Dietary polyphenols and their roles in fat browning. J Nutr Biochem 64:1–12

    CAS  PubMed  Google Scholar 

  33. Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437

    CAS  PubMed  Google Scholar 

  34. Srivastava S, Veech RL (2019) Brown and brite: the fat soldiers in the anti-obesity fight. Front Physiol 10:38

    PubMed  PubMed Central  Google Scholar 

  35. Takeuchi K, Tanaka A, Hayashi Y, Yokota A (2004) COX inhibition and NSAID-induced gastric damage—roles in various pathogenic events. Curr Top Med Chem 5:475–486

    Google Scholar 

  36. Tonby K, Wergeland I, Lieske NV, Kvale D, Tasken K, Dyrhol-Riise AM (2016) The COX-inhibitor indomethacin reduces Th1 effector and T-regulatory cells in vitro in mycobacterium tuberculosis infection. BMC Infect Dis 16:599

    PubMed  PubMed Central  Google Scholar 

  37. Turini ME, DuBois RN (2002) Cyclooxygenase-2: a therapeutic target. Annu Rev Med 53:35–57

    CAS  PubMed  Google Scholar 

  38. Vegiopoulos A, Müller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A et al (2011) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science. 328:1158–1161

    Google Scholar 

  39. Weindenfeld J, Lysy J, Shohami E (1987) Effect of dexamethasone on prostaglandin synthesis in various areas of rat brain. J Neurochem 48:1351–1354

    Google Scholar 

  40. Yan H, Kermouni A, Abdel-Hafez M, Lau DC (2003) Role of cyclooxygenases COX-1 and COX-2 in modulating adipogenesis in 3T3-L1 cells. J Lipid Res 44:424–429

    CAS  PubMed  Google Scholar 

  41. Zhang X, Luo Y, Wang C, Ding X, Yang X, Wu D (2018) Adipose mTORC1 suppresses prostaglandin signaling and beige adipogenesis via the CRTC2-COX-2 pathway. Cell Rep 24:3180–3193

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT, No. 2019R1A2C2002163).

Author information

Authors and Affiliations

Authors

Contributions

NH, JMH, and CMJ performed the in vivo animal experiments. NH, SM, and PHG carried out the experimental work. SM performed data analyses, interpretation, and molecular docking studies. SM and JWY wrote the manuscript and JWY is the guarantor for the integrity and accuracy of the data and is responsible for planning and designing this study.

Corresponding author

Correspondence to Jong Won Yun.

Ethics declarations

Competing of interests

None declared.

Ethics statement

All animal experiments were approved by the Committee for Laboratory Animal Care and Use of Daegu University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, N.H., Mukherjee, S., Jang, M.H. et al. Ketoprofen alleviates diet-induced obesity and promotes white fat browning in mice via the activation of COX-2 through mTORC1-p38 signaling pathway. Pflugers Arch - Eur J Physiol 472, 583–596 (2020). https://doi.org/10.1007/s00424-020-02380-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02380-7

Keywords

Navigation