Skip to main content
Log in

Effects of high-intensity interval training on adipose tissue lipolysis, inflammation, and metabolomics in aged rats

  • Original Article
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

High-intensity interval training (HIIT) is a time-efficient alternative to moderate-intensity continuous training (MICT) to improve metabolic health in older individuals. However, differences in adipose tissue metabolism between these two approaches are unclear. Here, we evaluated the effects of HIIT and MICT on metabolic phenotypes in aged rats. HIIT significantly decreased fat mass, increased percent lean mass, decreased fat-to-lean ratio, reduced serum high-sensitivity C-reactive protein, increased serum interleukin-10 levels, and decreased perirenal adipose tissue leptin compared with rats in the sedentary (SED) group. HIIT also increased pregnenolone, cortisol, and corticosterone in both adipose tissue and serum. Both exercise modalities enhanced hormone-sensitive lipase and adipose triglyceride lipase expression compared with the SED group and decreased palmitic acid, stearic acid, octadecadienoic acid, urea, 1-heptadecanol, and α-tocopherol. MICT was related to glycerolipid metabolism, whereas HIIT was related to steroid hormone biosynthesis. Overall, HIIT showed more favorable regulation of anti-inflammatory activity than MICT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adam J, Brandmaier S, Leonhardt J, Scheerer MF, Mohney RP, Xu T, Bi J, Rotter M, Troll M, Chi S, Heier M, Herder C, Rathmann W, Giani G, Adamski J, Illig T, Strauch K, Li Y, Gieger C, Peters A, Suhre K, Ankerst D, Meitinger T, Hrabe de Angelis M, Roden M, Neschen S, Kastenmuller G, Wang-Sattler R (2016) Metformin effect on nontargeted metabolite profiles in patients with type 2 diabetes and in multiple murine tissues. Diabetes 65:3776–3785. https://doi.org/10.2337/db16-0512

    Article  CAS  PubMed  Google Scholar 

  2. Alam MM, Iqbal S, Naseem I (2015) Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: mechanistic and therapeutic strategies. Arch Biochem Biophys 584:10–19. https://doi.org/10.1016/j.abb.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  3. Aldiss P, Symonds ME, Lewis JE, Boocock DJ, Miles AK, Bloor I, Ebling FJP, Budge H (2019) Interscapular and perivascular Brown adipose tissue respond differently to a short-term high-fat diet. Nutrients 11. https://doi.org/10.3390/nu11051065

    Article  CAS  PubMed Central  Google Scholar 

  4. Aragno M, Mastrocola R, Catalano MG, Brignardello E, Danni O, Boccuzzi G (2004) Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes 53:1082–1088. https://doi.org/10.2337/diabetes.53.4.1082

    Article  CAS  PubMed  Google Scholar 

  5. Burger HG, Hale GE, Dennerstein L, Robertson DM (2008) Cycle and hormone changes during perimenopause: the key role of ovarian function. Menopause 15:603–612. https://doi.org/10.1097/gme.0b013e318174ea4d

    Article  PubMed  Google Scholar 

  6. Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, Goldberg EL, Youm YH, Brown CW, Elsworth J, Rodeheffer MS, Schultze JL, Dixit VD (2017) Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550:119–123. https://doi.org/10.1038/nature24022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campbell JE, Fediuc S, Hawke TJ, Riddell MC (2009) Endurance exercise training increases adipose tissue glucocorticoid exposure: adaptations that facilitate lipolysis. Metab Clin Exp 58:651–660. https://doi.org/10.1016/j.metabol.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  8. Carta G, Murru E, Banni S, Manca C (2017) Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol 8:902. https://doi.org/10.3389/fphys.2017.00902

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios SR, Chyu MC, Yang RS, Shen CL (2018) Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr Res 49:23–36. https://doi.org/10.1016/j.nutres.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  10. Coelho DF, Pereira-Lancha LO, Chaves DS, Diwan D, Ferraz R, Campos-Ferraz PL, Poortmans JR, Lancha Junior AH (2011) Effect of high-fat diets on body composition, lipid metabolism and insulin sensitivity, and the role of exercise on these parameters. Braz J Med Biol Res 44:966–972. https://doi.org/10.1590/s0100-879x2011007500107

    Article  CAS  PubMed  Google Scholar 

  11. Coutinho AE, Fediuc S, Campbell JE, Riddell MC (2006) Metabolic effects of voluntary wheel running in young and old Syrian golden hamsters. Physiol Behav 87:360–367. https://doi.org/10.1016/j.physbeh.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  12. Du SF, Yu Q, Chuan K, Ye CL, He ZJ, Liu SJ, Zhu XY, Liu YJ (2017) In obese mice, exercise training increases 11beta-HSD1 expression, contributing to glucocorticoid activation and suppression of pulmonary inflammation. J Appl Physiol 123:717–727. https://doi.org/10.1152/japplphysiol.00652.2016

    Article  CAS  PubMed  Google Scholar 

  13. Elhakeem A, Hannam K, Deere KC, Hartley A, Clark EM, Moss C, Edwards MH, Dennison E, Gaysin T, Kuh D, Wong A, Cooper C, Cooper R, Tobias JH (2018) Physical activity producing low, but not medium or higher, vertical impacts is inversely related to BMI in older adults: findings from a multicohort study. J Gerontol A Biol Sci Med Sci 73:643–651. https://doi.org/10.1093/gerona/glx176

    Article  PubMed  Google Scholar 

  14. Fazelzadeh P, Hangelbroek RW, Tieland M, de Groot LC, Verdijk LB, van Loon LJ, Smilde AK, Alves RD, Vervoort J, Muller M, van Duynhoven JP, Boekschoten MV (2016) The muscle metabolome differs between healthy and frail older adults. J Proteome Res 15:499–509. https://doi.org/10.1021/acs.jproteome.5b00840

    Article  CAS  PubMed  Google Scholar 

  15. Giesbertz P, Padberg I, Rein D, Ecker J, Hofle AS, Spanier B, Daniel H (2015) Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes. Diabetologia 58:2133–2143. https://doi.org/10.1007/s00125-015-3656-y

    Article  CAS  PubMed  Google Scholar 

  16. Huang D, Wei W, Xie F, Zhu X, Zheng L, Lv Z (2018) Steroidogenesis decline accompanied with reduced antioxidation and endoplasmic reticulum stress in mice testes during ageing. Andrologia:50. https://doi.org/10.1111/and.12816

    Article  Google Scholar 

  17. Huffman DM, Barzilai N (2009) Role of visceral adipose tissue in aging. Biochim Biophys Acta 1790:1117–1123. https://doi.org/10.1016/j.bbagen.2009.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iggman D, Arnlov J, Cederholm T, Riserus U (2016) Association of adipose tissue fatty acids with cardiovascular and all-cause mortality in elderly men. JAMA Cardiol 1:745–753. https://doi.org/10.1001/jamacardio.2016.2259

    Article  PubMed  Google Scholar 

  19. Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H (2017) Circadian rhythms in adipose tissue physiology. Comprehens Physiol 7:383–427. https://doi.org/10.1002/cphy.c160017

    Article  Google Scholar 

  20. Kien CL, Bunn JY, Ugrasbul F (2005) Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure. Am J Clin Nutr 82:320–326. https://doi.org/10.1093/ajcn.82.2.320

    Article  CAS  PubMed  Google Scholar 

  21. Larsen S, Danielsen JH, Sondergard SD, Sogaard D, Vigelsoe A, Dybboe R, Skaaby S, Dela F, Helge JW (2015) The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J Med Sci Sports 25:e59–e69. https://doi.org/10.1111/sms.12252

    Article  CAS  PubMed  Google Scholar 

  22. Li FH, Sun L, Zhu M, Li T, Gao HE, Wu DS, Zhu L, Duan R, Liu TC (2018) Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model. Exp Gerontol 113:150–162. https://doi.org/10.1016/j.exger.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  23. Mela V, Hernandez O, Hunsche C, Diaz F, Chowen JA, De la Fuente M (2017) Administration of a leptin antagonist during the neonatal leptin surge induces alterations in the redox and inflammatory state in peripubertal/adolescent rats. Mol Cell Endocrinol 454:125–134. https://doi.org/10.1016/j.mce.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  24. Mennes E, Dungan CM, Frendo-Cumbo S, Williamson DL, Wright DC (2014) Aging-associated reductions in lipolytic and mitochondrial proteins in mouse adipose tissue are not rescued by metformin treatment. J Gerontol A Biol Sci Med Sci 69:1060–1068. https://doi.org/10.1093/gerona/glt156

    Article  CAS  PubMed  Google Scholar 

  25. Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK, Gulseth HL, Birkeland KI, Jensen J, Drevon CA (2014) The effects of acute and chronic exercise on PGC-1alpha, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281:739–749. https://doi.org/10.1111/febs.12619

    Article  CAS  PubMed  Google Scholar 

  26. Nunes PRP, Martins FM, Souza AP, Carneiro MAS, Orsatti CL, Michelin MA, Murta EFC, de Oliveira EP, Orsatti FL (2019) Effect of high-intensity interval training on body composition and inflammatory markers in obese postmenopausal women: a randomized controlled trial. Menopause 26:256–264. https://doi.org/10.1097/gme.0000000000001207

    Article  PubMed  Google Scholar 

  27. Palmer AK, Kirkland JL (2016) Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp Gerontol 86:97–105. https://doi.org/10.1016/j.exger.2016.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Plubell DL, Wilmarth PA, Zhao Y, Fenton AM, Minnier J, Reddy AP, Klimek J, Yang X, David LL, Pamir N (2017) Extended multiplexing of tandem mass tags (TMT) labeling reveals age and high fat diet specific proteome changes in mouse epididymal adipose tissue. Molec Cell Proteomics 16:873–890. https://doi.org/10.1074/mcp.M116.065524

    Article  CAS  Google Scholar 

  29. Redman LM, Smith SR, Burton JH, Martin CK, Il'yasova D, Ravussin E (2018) Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab 27(805–815):e804. https://doi.org/10.1016/j.cmet.2018.02.019

    Article  CAS  Google Scholar 

  30. Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, Carter RE, Lanza IR, Nair KS (2017) Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab 25:581–592. https://doi.org/10.1016/j.cmet.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rocha-Rodrigues S, Rodriguez A, Goncalves IO, Moreira A, Maciel E, Santos S, Domingues MR, Fruhbeck G, Ascensao A, Magalhaes J (2017) Impact of physical exercise on visceral adipose tissue fatty acid profile and inflammation in response to a high-fat diet regimen. Int J Biochem Cell Biol 87:114–124. https://doi.org/10.1016/j.bioce1.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez-Cuenca S, Carobbio S, Velagapudi VR, Barbarroja N, Moreno-Navarrete JM, Tinahones FJ, Fernandez-Real JM, Oresic M, Vidal-Puig A (2012) Peroxisome proliferator-activated receptor gamma-dependent regulation of lipolytic nodes and metabolic flexibility. Mol Cell Biol 32:1555–1565. https://doi.org/10.1128/mcb.06154-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VK, O'Rahilly S (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 52:910–917. https://doi.org/10.2337/diabetes.52.4.910

    Article  CAS  PubMed  Google Scholar 

  34. Schafer MJ, White TA, Evans G, Tonne JM, Verzosa GC, Stout MB, Mazula DL, Palmer AK, Baker DJ, Jensen MD, Torbenson MS, Miller JD, Ikeda Y, Tchkonia T, van Deursen JM, Kirkland JL, LeBrasseur NK (2016) Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65:1606–1615. https://doi.org/10.2337/db15-0291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Semba RD, Blaum C, Guralnik JM, Moncrief DT, Ricks MO, Fried LP (2003) Carotenoid and vitamin E status are associated with indicators of sarcopenia among older women living in the community. Aging Clin Exp Res 15:482–487

    Article  CAS  PubMed  Google Scholar 

  36. Sogaard D, Lund MT, Scheuer CM, Dehlbaek MS, Dideriksen SG, Abildskov CV, Christensen KK, Dohlmann TL, Larsen S, Vigelso AH, Dela F, Helge JW (2018) High-intensity interval training improves insulin sensitivity in older individuals. Acta Physiol 222:e13009. https://doi.org/10.1111/apha.13009

    Article  CAS  Google Scholar 

  37. Starnes JW, Parry TL, O'Neal SK, Bain JR, Muehlbauer MJ, Honcoop A, Ilaiwy A, Christopher PM, Patterson C, Willis MS (2017) Exercise-induced alterations in skeletal muscle, heart, liver, and serum metabolome identified by non-targeted metabolomics analysis. Metabolites 7. https://doi.org/10.3390/metabo7030040

    Article  PubMed Central  Google Scholar 

  38. Wang N, Liu Y, Ma Y, Wen D (2017) High-intensity interval versus moderate-intensity continuous training: superior metabolic benefits in diet-induced obesity mice. Life Sci 191:122–131. https://doi.org/10.1016/j.lfs.2017.08.023

    Article  CAS  PubMed  Google Scholar 

  39. Yanting C, Yang QY, Ma GL, Du M, Harrison JH, Block E (2018) Dose- and type-dependent effects of long-chain fatty acids on adipogenesis and lipogenesis of bovine adipocytes. J Dairy Sci 101:1601–1615. https://doi.org/10.3168/jds.2017-13312

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (grant no. 31500961 and 31971099), Guangdong Scientific Project (grant nos. 2014A020220015 and 2015A020219015), the Natural Science Fund for Colleges and Universities of Jiangsu Province (grant no. 18KJB180011), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant no. KYCX19_0774).

Author information

Authors and Affiliations

Authors

Contributions

L.F.H., S.L., and L.T. designed the study. L.F.H., S.L., L.T., M.Z., Y.L.D., G.H.E., W.D.S., and X.T. collected the data and carried out data analyses. L.F.H. and S.L. prepared the figures and produced the initial draft of the manuscript. All authors read and approved the final submitted manuscript.

Corresponding author

Correspondence to Fang-Hui Li.

Ethics declarations

All experiments were approved by the Ethics Committee on Animal Experimentation of the Guangdong Medical Laboratory Animal Center and followed the Guidelines for the Care and Use of Laboratory Animals. Experiments were approved by the Animal Experiment Ethical Inspection Form of Nanjing Normal University (IACUU-1903006).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Exercise Physiology: future opportunities and challenges in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Li, FH., Li, T. et al. Effects of high-intensity interval training on adipose tissue lipolysis, inflammation, and metabolomics in aged rats. Pflugers Arch - Eur J Physiol 472, 245–258 (2020). https://doi.org/10.1007/s00424-020-02351-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02351-y

Keywords

Navigation