Skip to main content
Log in

Transcripts of Kv7.1 and MinK channels and slow delayed rectifier K+ current (IKs) are expressed in zebrafish (Danio rerio) heart

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Zebrafish are increasingly used as a model for human cardiac electrophysiology, arrhythmias, and drug screening. However, K+ ion channels of the zebrafish heart, which determine the rate of repolarization and duration of cardiac action potential (AP) are still incompletely known and characterized. Here, we provide the first evidence for the presence of the slow component of the delayed rectifier K+channels in the zebrafish heart and characterize electrophysiological properties of the slow component of the delayed rectifier K+current, IKs. Zebrafish atrium and ventricle showed strong transcript expression of the kcnq1 gene, which encodes the Kv7.1 α-subunit of the slow delayed rectifier K+ channel. In contrast, the kcne1 gene, encoding the MinK β-subunit of the delayed rectifier, was expressed at 21 and 17 times lower level in ventricle and atrium, respectively, in comparison to the kcnq1. IKs was observed in 62% of ventricular myocytes with mean (± SEM) density of 1.23 ± 0.37 pA/pF at + 30 mV. Activation rate of IKs was 38% faster (τ50 = 1248 ± 215 ms) than kcnq1:kcne1 channels (1725 ± 792 ms) expressed in 3:1 ratio in Chinese hamster ovary cells. Microelectrode experiments demonstrated the functional relevance of IKs in the zebrafish heart, since 100 μM chromanol 293B produced a significant prolongation of AP in zebrafish ventricle. We conclude that AP repolarization in zebrafish ventricle is contributed by IKs, which is mainly generated by homotetrameric Kv7.1 channels not coupled to MinK ancillary β-subunits. This is a clear difference to the human heart, where MinK is an essential component of the slow delayed rectifier K+channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abramochkin DV, Vornanen M (2016) Seasonal changes of cholinergic response in the atrium of arctic navaga cod (Eleginus navaga). J Comp Physiol B 187:329–338

    Article  Google Scholar 

  2. Alday A, Alonso H, Gallego M, Urrutia J, Letamendia A, Callol C, Casis O (2014) Ionic channels underlying the ventricular action potential in zebrafish embryo. Pharmacol Res 84:26–31. https://doi.org/10.1016/j.phrs.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  3. Banyasz T, Jian Z, Horvath B, Khabbaz S, Izu LT, Chen-Izu Y (2014) Beta-adrenergic stimulation reverses the IKr-IKs dominant pattern during cardiac action potential. Pflüg Arch 466:2067–2076. https://doi.org/10.1007/s00424-014-1465-7

    Article  CAS  Google Scholar 

  4. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384:78–80

    Article  CAS  Google Scholar 

  5. Bett GCL, Morales MJ, Beahm DL, Duffey ME, Rasmusson RL (2006) Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel. J Physiol 576:755–767. https://doi.org/10.1113/jphysiol.2006.116012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bosch RF, Gaspo R, Busch AE, Lang HJ, Li GR, Nattel S (1998) Effects of the chromanol 293B, a selective blocker of the slow, component of the delayed rectifier K+ current, on repolarization in human and guinea pig ventricular myocytes. Cardiovasc Res 38:441–450. https://doi.org/10.1016/s0008-6363(98)00021-2

    Article  CAS  PubMed  Google Scholar 

  7. Brette F, Luxan G, Cros C, Dixey H, Wilson C, Shiels HA (2008) Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). Biochem Biophys Res Commun 374:143–146. https://doi.org/10.1016/j.bbrc.2008.06.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Busch AE, Busch GL, Ford E, Suessbrich H, Lang HJ, Greger R, Kunzelmann K, Attali B, Stühmer W (1997) The role of the IsK protein in the specific pharmacological properties of the IKs channel complex. Br J Pharmacol 122:187–189

    Article  CAS  Google Scholar 

  9. Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G (2009) Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab 10:116–124

    Article  CAS  Google Scholar 

  10. Chen H, Kim LA, Rajan S, Xu S, Goldstein SAN (2003) Charybdotoxin binding in the IKs pore demonstrates two MinK subunits in each channel complex. Neuron 40:15–23

    Article  CAS  Google Scholar 

  11. Colatsky TJ, Fermini B, Gintant GA, Pierson JB, Sager P, Sekino Y, Strauss DG, Stockbridge N (2016) The comprehensive in vitro proarrhythmia assay (CiPA) initiative—update on progress. J Pharmacol Toxicol Methods 81:15–20

    Article  CAS  Google Scholar 

  12. Crumb WJ, Vicente J, Johannesen L, Strauss DG (2016) An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. J Pharmacol Toxicol Methods 81:251–262

    Article  CAS  Google Scholar 

  13. Demolombe S, Baro I, Pereon Y, Bliek J, Mohammad-Panah R, Pollard H, Morid S, Mannens M, Wilde A, Barhanin J et al (1998) A dominant negative isoform of the long QT syndrome 1 gene product. J Biol Chem 273:6837–6843

    Article  CAS  Google Scholar 

  14. Fermini B, Hancox JC, Abi-Gerges N, Bridgland-Taylor M, Chaudhary KW, Colatsky T, Correll K, Crumb W, Damiano B, Erdemli G (2016) A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. J Biomol Screen 21:1–11

    Article  CAS  Google Scholar 

  15. Gintant GA, Sager PT, Stockbridge N (2016) Evolution of strategies to improve preclinical cardiac safety testing. Nat RevDrug Discov 15:457–471

    Article  CAS  Google Scholar 

  16. Guo X, Gao X, Wang Y, Peng L, Zhu Y, Wang S (2012) IKs protects from ventricular arrhythmia during cardiac ischemia and reperfusion in rabbits by preserving the repolarization reserve. PLoS One 7:e31545. https://doi.org/10.1371/journal.pone.0031545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hassinen M, Laulaja S, Paajanen V, Haverinen J, Vornanen M (2011) Thermal adaptation of the crucian carp (Carassius carassius) cardiac delayed rectifier current, IKs, by homomeric assembly of Kv7.1 subunits without MinK. Am J Physiol 301:R255–R265. https://doi.org/10.1152/ajpregu.00067.2011

    Article  CAS  Google Scholar 

  18. Hassinen M, Haverinen J, Hardy ME, Shiels HA, Vornanen M (2015) Inward rectifier potassium current (IK1) and Kir2 composition of the zebrafish (Danio rerio) heart. Pflüg Arch Eur J Physiol 467:2437–2446

    Article  CAS  Google Scholar 

  19. Hassinen M, Haverinen J, Vornanen M (2015) Molecular basis and drug sensitivity of the delayed rectifier (IKr) in the fish heart. Comp Biochem Physiol C 176-177:44–51. https://doi.org/10.1016/j.cbpc.2015.07.005

    Article  CAS  Google Scholar 

  20. Hassinen M, Haverinen J, Vornanen M (2017) Small functional If current in sinoatrial pacemaker cells of the brown trout (Salmo trutta fario) heart despite strong expression of HCN channel transcripts. Am J Physiol 313:R711–R722. https://doi.org/10.1152/ajpregu.00227.2017

    Article  CAS  Google Scholar 

  21. Haverinen J, Vornanen M (2009) Responses of action potential and K+ currents to temperature acclimation in fish hearts: phylogeny or thermal preferences? Physiol Biochem Zool 82:468–482. https://doi.org/10.1086/590223

    Article  CAS  PubMed  Google Scholar 

  22. Haverinen J, Abramochkin DV, Kamkin A, Vornanen M (2017) The maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells. Am J Physiol 312:R165–R171. https://doi.org/10.1152/ajpregu.00403.2016

    Article  Google Scholar 

  23. Haverinen J, Hassinen M, Korajoki H, Vornanen M (2018) Cardiac voltage-gated sodium channel expression and electrophysiological characterization of the sodium current in the zebrafish (Danio rerio) ventricle. Prog Biophys Mol Biol 000:1–11 https://doi.org/10.1016/j.pbiomolbio.2018.04.002

  24. Jost N, Virag L, Bitay M, Takacs J, Lengyel C, Biliczki P, Nagy Z, Bogats G, Lathrop DA, Papp JG et al (2005) Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation 112:1392–1399

    Article  Google Scholar 

  25. Jurkiewicz NK, Sanguinetti MC (1993) Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circ Res 72:75–83

    Article  CAS  Google Scholar 

  26. Kari G, Rodeck U, Dicker AP (2007) Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmcol Ther 82:70–80

    Article  CAS  Google Scholar 

  27. Kramer J, Obejero-Paz CA, Myatt G, Kuryshev YA, Bruening-Wright A, Verducci JS, Brown AM (2013) MICE models: superior to the HERG model in predicting Torsade de Pointes. Sci Rep 3:2100

    Article  Google Scholar 

  28. Kurokawa J, Chen L, Kass RS (2003) Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc Natl Acad Sci U S A 100:2122–2127

    Article  CAS  Google Scholar 

  29. Lerche C, Seebohm G, Wagner CI, Scherer CR, Dehmelt L, Abitbol I, Gerlach U, Brendel J, Attali B, Busch AE (2000) Molecular impact of MinK on the enantiospecific block of IKs by chromanols. Br J Pharmacol 131:1503–1506

    Article  CAS  Google Scholar 

  30. Lerche C, Bruhova I, Lerche H, Steinmeyer K, Wei AD, Strutz-Seebohm N, Lang F, Busch AE, Zhorov BS, Seebohm G (2007) Chromanol 293B binding in KCNQ1 (Kv7.1) channels involves electrostatic interactions with a potassium ion in the selectivity filter. Mol Pharmacol 71:1503–1511

    Article  CAS  Google Scholar 

  31. Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76:351–365

    Article  CAS  Google Scholar 

  32. Lundquist AL, Manderfield LJ, Vanoye CG, Rogers CS, Donahue BS, Chang PA, Drinkwater DC, Murray KT, George AL (2005) Expression of multiple KCNE genes in human heart may enable variable modulation of IKs. J Mol Cell Cardiol 38:277–287

    Article  CAS  Google Scholar 

  33. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499. https://doi.org/10.1126/science.1066843

    Article  CAS  PubMed  Google Scholar 

  34. McGrath P, Li CQ (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13:394–401

    Article  CAS  Google Scholar 

  35. Morin TJ, Kobertz WR (2008) Counting membrane-embedded KCNE beta-subunits in functioning K+ channel complexes. Proc Natl Acad Sci U S A 105:1478–1482. https://doi.org/10.1073/pnas.0710366105

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nakajo K, Ulbrich MH, Kubo Y, Isacoff EY (2010) Stoichiometry of the KCNQ1 - KCNE1 ion channel complex. Proc Natl Acad Sci U S A 107:18862–18867. https://doi.org/10.1073/pnas.1010354107

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nemtsas P, Wettwer E, Christ T, Weidinger G, Ravens U (2010) Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol 48:161–171. https://doi.org/10.1016/j.yjmcc.2009.08.034

    Article  CAS  PubMed  Google Scholar 

  38. Plant LD, Xiong D, Dai H, Goldstein SA (2014) Individual IKs channels at the surface of mammalian cells contain two KCNE1 accessory subunits. Proc Natl Acad Sci U S A 111:E1438–E1446. https://doi.org/10.1073/pnas.1323548111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pongs O, Schwarz JR (2010) Ancillary subunits associated with voltage-dependent K+ channels. Physiol Rev 90:755–796

    Article  CAS  Google Scholar 

  40. Qi M, Chen YH (2015) Zebrafish as a model for cardiac development and diseases. Hum Gen Ebryol 5:e112. https://doi.org/10.4172/2161-0436.1000e112

    Article  Google Scholar 

  41. Romey G, Attali B, Chouabe C, Abitbol I, Guillemare E, Barhanin J, Lazdunski M (1997) Molecular mechanism and functional significance of the MinK control of the KvLQT1 channel activity. J Biol Chem 272:16713–16716

    Article  CAS  Google Scholar 

  42. Rosati B, Dong M, Cheng L, Liou SR, Yan Q, Park JY, Shiang E, Sanguinetti MC, Wang HS, McKinnon D (2008) Evolution of ventricular myocyte electrophysiology. Physiol Genomics 35:262–272. https://doi.org/10.1152/physiolgenomics.00159.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK (1991) Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circ Res 68:77–84

    Article  CAS  Google Scholar 

  44. Sanguinetti MC, Curran ME, Zou A, Shen J, Specter PS, Atkinson DL, Keating MT (1996) Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83

    Article  CAS  Google Scholar 

  45. Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045

    Article  CAS  Google Scholar 

  46. Tristani-Firouzi M, Chen J, Mitcheson JS, Sanguinetti MC (2001) Molecular biology of K+ channels and their role in cardiac arrhythmias. Am J Med 110:50–59

    Article  CAS  Google Scholar 

  47. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    Article  CAS  Google Scholar 

  48. Tsai CT, Wu CK, Chiang FT, Tseng CD, Lee JK, Yu CC, Wang YC, Lai LP, Lin JL, Hwang JJ (2011) In-vitro recording of adult zebrafish heart electrocardiogram—a platform for pharmacological testing. Clin Chim Acta 412:1963–1967. https://doi.org/10.1016/j.cca.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  49. Vernlund L (2011) Characterization of expression of the KCNE gene family in zebrafish, Danio rerio. Honors Theses. Paper 15. http://docs.rwu.edu/honors_theses/15

  50. Viswanathan PC, Shaw RM, Rudy Y (1999) Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence. Circulation 99:2466–2474

    Article  CAS  Google Scholar 

  51. Vornanen M (1997) Sarcolemmal Ca influx through L-type Ca channels in ventricular myocytes of a teleost fish. Am J Phys 272:R1432–R1440

    CAS  Google Scholar 

  52. Vornanen M, Hassinen M (2016) Zebrafish heart as a model for human cardiac electrophysiology. Channels 10:101–110

    Article  Google Scholar 

  53. Vornanen M, Ryökkynen A, Nurmi A (2002) Temperature-dependent expression of sarcolemmal K+ currents in rainbow trout atrial and ventricular myocytes. Am J Phys 282:R1191–R1199

    Article  CAS  Google Scholar 

  54. Wang W, Xia J, Kass RS (1998) MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IKs channel. J Biol Chem 273:34069–34074

    Article  CAS  Google Scholar 

  55. Wang K, Terrenoire CE, Sampson KJ, Iyer V, Osteen JD, Lu J, Keller G, Kotton DN, Kass RS (2011) Biophysical properties of slow potassium channels in human embryonic stem cell derived cardiomyocytes implicate subunit stoichiometry. J Physiol 589:6093–6104

    Article  CAS  Google Scholar 

  56. Westerfield M (2007) The zebrafish book: a guide for the laboratory use of zebrafish Danio (Brachydanio rerio), 5th edn. Univ. of Oregon Press, Eugene

    Google Scholar 

  57. Wiener R, Haitin Y, Shamgar L, Fernandez-Alonso MC, Martos A, Chomsky-Hecht O, Rivas G, Attali B, Hirsch JA (2008) The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction. J Biol Chem 283:5815–5830. https://doi.org/10.1074/jbc.M707541200

    Article  CAS  PubMed  Google Scholar 

  58. Wu C, Sharma K, Laster K, Hersi M, Torres C, Lukas TJ, Moore EJ (2014) Kcnq1-5 (Kv7.1-5) potassium channel expression in the adult zebrafish. BMC Physiol 14:1

    Article  CAS  Google Scholar 

  59. Xu H, Guo W, Nerbonne JM (1999) Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 113:661–677

    Article  CAS  Google Scholar 

  60. Yamada Y, Chen X, Kobayashi T, Kamada Y, Nagashima M, Tsutsuura M, Seki S, Yamakage M, Namiki A, Tohse N (2002) A truncated splice variant of KCNQ1 cloned from rat heart. Biochem Biophys Res Commun 294:199–204

    Article  CAS  Google Scholar 

  61. Yue L, Feng J, Li GR, Nattel S (1996) Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am J Physiol 270:H2157–H2168. https://doi.org/10.1152/ajpheart.1996.270.6.H2157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Anita Kervinen is acknowledged for technical assistance and taking care of the fish.

Funding

This study was funded by the Russian Science Foundation (14-15-00268 to DVA) and the Jane and Aatos Erkko Foundation (64579 to MV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis V. Abramochkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramochkin, D.V., Hassinen, M. & Vornanen, M. Transcripts of Kv7.1 and MinK channels and slow delayed rectifier K+ current (IKs) are expressed in zebrafish (Danio rerio) heart. Pflugers Arch - Eur J Physiol 470, 1753–1764 (2018). https://doi.org/10.1007/s00424-018-2193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2193-1

Keywords

Navigation