Skip to main content

Advertisement

Log in

Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts

  • Organ Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Angiotensin II preconditioning (APC) involves an angiotensin II type 1 receptor (AT1-R)-dependent translocation of PKCε and survival kinases to the mitochondria leading to cardioprotection after ischemia-reperfusion (IR). However, the role that mitochondrial AT1-Rs and angiotensin II type 2 receptors (AT2-Rs) play in APC is unknown. We investigated whether pretreatment of Langendorff-perfused rat hearts with losartan (L, AT1-R blocker), PD 123,319 (PD, AT2-R blocker), or their combination (L + PD) affects mitochondrial AT1-R, AT2-R, PKCε, PKCδ, Akt, PKG-1, MAPKs (ERK1/2, JNK, p38), mitochondrial respiration, cardiac function, and infarct size (IS). The results indicate that expression of mitochondrial AT1-Rs and AT2-Rs were enhanced by APC 1.91-fold and 2.32-fold, respectively. Expression of AT2-R was abolished by PD but not by L, whereas the AT1-R levels were abrogated by both blockers. The AT1-R response profile to L and PD was also shared by PKCε, Akt, MAPKs, and PKG-1, but not by PKCδ. A marked increase in state 3 (1.84-fold) and respiratory control index (1.86-fold) of mitochondria was observed with PD regardless of L treatment. PD also enhanced the post-ischemic recovery of rate pressure product (RPP) by 74% (p < 0.05) compared with APC alone. Losartan, however, inhibited the (RPP) by 44% (p < 0.05) before IR and reduced the APC-induced increase of post-ischemic cardiac recovery by 73% (p < 0.05). Finally, L enhanced the reduction of IS by APC through a PD-sensitive mechanism. These findings suggest that APC upregulates angiotensin II receptors in mitochondria and that AT2-Rs are cardioprotective through their permissive action on AT1-R signaling and the suppression of cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, Smith BJ, Burks TN, Cohn RD, Fedarko NS, Carey RM, O’Rourke B, Walston JD (2011) Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci U S A 108:14849–14854. https://doi.org/10.1073/pnas.1101507108

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alvin Z, Laurence GG, Coleman BR, Zhao A, Hajj-Moussa M, Haddad GE (2011) Regulation of L-type inward calcium activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts. Can J Physiol Pharmacol 89(3):206–125. https://doi.org/10.1139/Y11-011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Baker KM, Chernin MI, Schreiber T, Sanghi S, Haiderzaidi S, Booz GW, Dostal DE, Kumar R (2004) Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept 120:5–13. https://doi.org/10.1016/j.regpep.2004.04.004

    Article  PubMed  CAS  Google Scholar 

  4. Barreto-Torres G, Parodi-Rullan R, Javadov S (2012) The role of PPARalpha in metformin-induced attenuation of mitochondrial dysfunction in acute cardiac ischemia/reperfusion in rats. Int J Mol Sci 13:7694–7709. https://doi.org/10.3390/ijms13067694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Batenburg WW, Garrelds IM, Bernasconi CC, Juillerat-Jeanneret L, van Kats JP, Saxena PR, Danser AH (2004) Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries. Circulation 109:2296–2301. https://doi.org/10.1161/01.CIR.0000128696.12245.57

    Article  PubMed  CAS  Google Scholar 

  6. Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE (2011) Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond) 121:297–303. https://doi.org/10.1042/CS20110036

    Article  CAS  Google Scholar 

  7. Brouwers S, Smolders I, Massie A, Dupont AG (2013) Angiotensin II type 2 receptor-mediated and nitric oxide-dependent renal vasodilator response to compound 21 unmasked by angiotensin-converting enzyme inhibition in spontaneously hypertensive rats in vivo. Hypertension 62:920–926. https://doi.org/10.1161/HYPERTENSIONAHA.112.00762

    Article  PubMed  CAS  Google Scholar 

  8. Cano-Abad MF, Villarroya M, Garcia AG, Gabilan NH, Lopez MG (2001) Calcium entry through L-type calcium channels causes mitochondrial disruption and chromaffin cell death. J Biol Chem 276(43):39695–39704

    Article  PubMed  CAS  Google Scholar 

  9. Caputo L, Benessiano J, Boulanger CM, Levy BI (1995) Angiotensin II increases cGMP content via endothelial angiotensin II AT1 subtype receptors in the rat carotid artery. Arterioscler Thromb Vasc Biol 15:1646–1651

    Article  PubMed  CAS  Google Scholar 

  10. Celio MR, Inagami T (1981) Angiotensin II immunoreactivity coexists with renin in the juxtaglomerular granular cells of the kidney. Proc Natl Acad Sci U S A 78:3897–3900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. De Mello WC (2014) Beyond the circulating renin-angiotensin aldosterone system. Front Endocrinol (Lausanne) 5:104. https://doi.org/10.3389/fendo.2014.00104

    Article  Google Scholar 

  12. De Mello WC, Monterrubio J (2004) Intracellular and extracellular angiotensin II enhance the L-type calcium current in the failing heart. Hypertension 44(3):360–364

    Article  PubMed  CAS  Google Scholar 

  13. Diaz RJ, Wilson GJ (1997) Selective blockade of AT1 angiotensin II receptors abolishes ischemic preconditioning in isolated rabbit hearts. J Mol Cell Cardio 29:129–139. https://doi.org/10.1006/jmcc.1996.0258

    Article  CAS  Google Scholar 

  14. Dikalov SI, Nazarewicz RR (2013) Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal 19:1085–1094. https://doi.org/10.1089/ars.2012.4604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ferrao FM, Cardoso LHD, Drummond HA, Li XC, Zhuo JL, Gomes DS, Lara LS, Vieyra A, Lowe J (2017) Luminal ANG II is internalized as a complex with AT1R/AT2R heterodimers to target endoplasmic reticulum in LLC-PK1 cells. Am J Physiol Renal Physiol 313:F440–F449. https://doi.org/10.1152/ajprenal.00261.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fishman MC, Zimmerman EA, Slater EE (1981) Renin and angiotensin: the complete system within the neuroblastoma x glioma cell. Science 214:921–923

    Article  PubMed  CAS  Google Scholar 

  17. Flynn JD, Akers WS (2003) Effects of the angiotensin II subtype 1 receptor antagonist losartan on functional recovery of isolated rat hearts undergoing global myocardial ischemia-reperfusion. Pharmacotherapy 23(11):1401–1410

    Article  PubMed  CAS  Google Scholar 

  18. Freichel M, Berlin M, Schürger A, Mathar I, Bacmeister L, Medert R, Frede W, Marx A, Segin S, Londoño JEC (2017) TRP channels in the heart. In: Emir TLR (ed) Neurobiology of TRP channels, 2nd edn. CRC Press/Taylor & Francis, Boca Raton, Chapter 9. Available from: https://www.ncbi.nlm.nih.gov/books/NBK476106/. https://doi.org/10.4324/9781315152837-9

    Chapter  Google Scholar 

  19. Gwathmey TM, Shaltout HA, Pendergrass KD, Pirro NT, Figueroa JP, Rose JC, Diz DI, Chappell MC (2009) Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. Am J Physiol Renal Physiol 296:F1484–F1493. https://doi.org/10.1152/ajprenal.90766.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hebert TE, Loisel TP, Adam L, Ethier N, Onge SS, Bouvier M (1998) Functional rescue of a constitutively desensitized beta2AR through receptor dimerization. Biochem J 330(Pt 1):287–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hernandez JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S (2014) Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med 18:709–720. https://doi.org/10.1111/jcmm.12220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Inagami T (2011) Mitochondrial angiotensin receptors and aging. Circ Res 109:1323–1324. https://doi.org/10.1161/RES.0b013e31823f05e0

    Article  PubMed  CAS  Google Scholar 

  23. Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700. https://doi.org/10.1038/21441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kaschina E, Namsolleck P, Unger T (2017) AT2 receptors in cardiovascular and renal diseases. Pharmacol Res 125(Pt A):39–47. https://doi.org/10.1016/j.phrs.2017.07.008

    Article  PubMed  CAS  Google Scholar 

  25. Lax CJ, Domenighetti AA, Pavia JM, Di Nicolantonio R, Curl CL, Morris MJ, Delbridge LM (2004) Transitory reduction in angiotensin AT2 receptor expression levels in postinfarct remodelling in rat myocardium. Clin Exp Pharmacol Physiol 31:512–517. https://doi.org/10.1111/j.1440-1681.2004.04034.x

    Article  PubMed  CAS  Google Scholar 

  26. Lee SH, Doliba N, Osbakken M, Oz M, Mancini D (1998) Improvement of myocardial mitochondrial function after hemodynamic support with left assist devices in patients with heart failure. J Thorac Cardiovasc Surg 116(2):344–349

    Article  PubMed  CAS  Google Scholar 

  27. Lemarie CA, Schiffrin EL (2010) The angiotensin II type 2 receptor in cardiovascular disease. J Renin-Angiotensin-Aldosterone Syst 11:19–31. https://doi.org/10.1177/1470320309347785

    Article  PubMed  CAS  Google Scholar 

  28. Li Y, Li XH, Yuan H (2012) Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc Diagn Ther 2:56–62. https://doi.org/10.3978/j.issn.2223-3652.2012.02.02

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liang W, Oudit GY, Patel MM, Shah AM, Woodgett JR, Tsushima RG, Ward ME, Backx PH (2010) Role of phosphoinositide 3-kinase {alpha}, protein kinase C, and L-type Ca2+ channels in mediating the complex actions of angiotensin II on mouse cardiac contractility. Hypertension 56(3):422–429. https://doi.org/10.1161/HYPERTENSIONAHA.109.149344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu Y, Tsuchida A, Cohen MV, Downey JM (1995) Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol 27:883–892

    Article  PubMed  CAS  Google Scholar 

  31. MaassenVanDenBrink A, de Vries R, Saxena PR, Schalekamp MA, Danser AH (1999) Vasoconstriction by in situ formed angiotensin II: role of ACE and chymase. Cardiovasc Res 44:407–415

    Article  PubMed  CAS  Google Scholar 

  32. Matsumoto T, Ozono R, Oshima T, Matsuura H, Sueda T, Kajiyama G, Kambe M (2000) Type 2 angiotensin II receptor is downregulated in cardiomyocytes of patients with heart failure. Cardiovasc Res 46:73–81

    Article  PubMed  CAS  Google Scholar 

  33. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97. https://doi.org/10.1152/ajpcell.00287.2006

    Article  PubMed  CAS  Google Scholar 

  34. Ng GY, O’Dowd BF, Lee SP, Chung HT, Brann MR, Seeman P, George SR (1996) Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem Biophys Res Commun 227:200–204. https://doi.org/10.1006/bbrc.1996.1489

    Article  PubMed  CAS  Google Scholar 

  35. Nuñez RE, Castro M, Javadov S, Escobales N (2014) Angiotensin II and ischemic preconditioning synergize to improve mitochondrial function while showing additive effects on ventricular postischemic recovery. J Cardiovasc Pharmacol 64:172–179. https://doi.org/10.1097/FJC.0000000000000103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nuñez RE, Javadov S, Escobales N (2017) Angiotensin II-preconditioning is associated with increased PKCepsilon/PKCdelta ratio and prosurvival kinases in mitochondria. Clin Exp Pharmacol Physiol 44:1201–1212. https://doi.org/10.1111/1440-1681.12816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Okamura T, Clemens DL, Inagami T (1981) Renin, angiotensins, and angiotensin-converting enzyme in neuroblastoma cells: evidence for intracellular formation of angiotensins. Proc Natl Acad Sci U S A 78:6940–6943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Parodi-Rullan R, Barreto-Torres G, Ruiz L, Casasnovas J, Javadov S (2012) Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats. Cell Physiol Biochem 29:841–850. https://doi.org/10.1159/000178526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pueyo ME, Arnal JF, Rami J, Michel JB (1998) Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am J Phys 274(1 Pt 1):C214–C220

    Article  CAS  Google Scholar 

  40. Saito S, Hirata Y, Emori T, Imai T, Marumo F (1996) Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors. Hypertens Res 19:201–206

    Article  PubMed  CAS  Google Scholar 

  41. Sasaoka T, Egi Y, Tawa M, Yamamoto A, Ohkita M, Takaoka M, Maruyama T, Akira T, Matsumara Y (2008) Angiotensin II type 2 receptor-mediated inhibition of norepinehrine release in isolated rat hearts. J Cardiovasc Pharmacol 52(2):176–183

    Article  PubMed  CAS  Google Scholar 

  42. Savoia C, Volpe M (2015) AT1R-AT2R cross talk. In: Unger T, Steckelings UM, dos Santos RAS (eds) The protective arm of the renin angiotensin system: functional aspects and therapeutic implications, 1st edn. Elsevier, United Kingdom, pp 35–39

    Chapter  Google Scholar 

  43. Schmermund A, Lerman LO, Ritman EL, Rumberger JA (1999) Cardiac production of angiotensin II and its pharmacologic inhibition: effects on the coronary circulation. Mayo Clin Proc 74:503–513. https://doi.org/10.4065/74.5.503

    Article  PubMed  CAS  Google Scholar 

  44. Sharma A, Singh M (1999) Role of angiotensin in cardioprotective effect of ischemic preconditioning. J Cardiovasc Pharmacol 33:772–778

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki H, Maehara K, Yaoita H, Maruyama Y (2004) Altered effects of angiotensin II type 1 and type 2 receptor blockers on cardiac norepinephrine release and inotropic responses during cardiac sympathetic nerve stimulation in aorto-caval shunt rats. Circ J 68(7):683–690

    Article  PubMed  CAS  Google Scholar 

  46. Tadevosyan A, Xiao J, Surinkaew S, Naud P, Merlen C, Harada M, Qi X, Chatenet D, Fournier A, Allen BG, Nattel S (2017) Intracellular angiotensin-II interacts with nuclear angiotensin receptors in cardiac fibroblasts and regulates RNA synthesis, cell proliferation, and collagen secretion. J Am Heart Assoc 6(4):e004965. https://doi.org/10.1161/JAHA.116.004965

    Article  PubMed  PubMed Central  Google Scholar 

  47. Valenzuela R, Costa-Besada MA, Iglesias-Gonzalez J, Perez-Costas E, Villar-Cheda B, Garrido-Gil P, Melendez-Ferro M, Soto-Otero R, Lanciego JL, Henrion D, Franco R, Labandeira-Garcia JL (2016) Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis. https://doi.org/10.1038/cddis.2016.327

  48. Vazquez E, Coronel I, Bautista R, Romo E, Villalon CM, Avila-Casado MC, Soto V, Escalante B (2005) Angiotensin II-dependent induction of AT(2) receptor expression after renal ablation. Am J Physiol Renal Physiol 288:F207–F213. https://doi.org/10.1152/ajprenal.00216.2004

    Article  PubMed  CAS  Google Scholar 

  49. Volk T, Nguyen TH, Schultz JH, Ehmke H (1999) Relationship between transient outward K+ current and Ca2+ influx in rat cardiac myocytes of endo- and epicardial origin. J Physiol 519(Pt 3):841–850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wexler RR, Greenlee WJ, Irvin JD, Goldberg MR, Prendergast K, Smith RD, Timmermans PB (1996) Nonpeptide angiotensin II receptor antagonists: the next generation in antihypertensive therapy. J Med Chem 39:625–656. https://doi.org/10.1021/jm9504722

    Article  PubMed  CAS  Google Scholar 

  51. Widdop RE, Jones ES, Hannan RE, Gaspari TA (2003) Angiotensin AT2 receptors: cardiovascular hope or hype? Br J Pharmacol 140:809–824. https://doi.org/10.1038/sj.bjp.0705448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Xu Y, Clanachan AS, Jugdutt BI (2000) Enhanced expression of angiotensin II type 2 receptor, inositol 1,4, 5-trisphosphate receptor, and protein kinase cepsilon during cardioprotection induced by angiotensin II type 2 receptor blockade. Hypertension 36:506–510

    Article  PubMed  CAS  Google Scholar 

  53. Yang J, Chen C, Ren H, Han Y, He D, Zhou L, Hopfer U, Jose PA, Zeng C (2012) Angiotensin II AT(2) receptor decreases AT(1) receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats. J Hypertens 30:1176–1184. https://doi.org/10.1097/HJH.0b013e3283532099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zarahn ED, Ye X, Ades AM, Reagan LP, Fluharty SJ (1992) Angiotensin-induced cyclic GMP production is mediated by multiple receptor subtypes and nitric oxide in N1E-115 neuroblastoma cells. J Neurochem 58:1960–1963

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Institutes of Health Research Centers in Minority Institutions (RCMI) Program grant G12M007600, National Institute of General Medical Sciences grant SC1GM128210 (S.J.), and the University of Puerto Rico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Escobales.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuñez, R.E., Javadov, S. & Escobales, N. Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts. Pflugers Arch - Eur J Physiol 470, 1391–1403 (2018). https://doi.org/10.1007/s00424-018-2153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2153-9

Keywords

Navigation