Skip to main content

Advertisement

Log in

Differential distribution and functional impact of BK channel beta1 subunits across mesenteric, coronary, and different cerebral arteries of the rat

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Large conductance, Ca2+ i- and voltage-gated K+ (BK) channels regulate myogenic tone and, thus, arterial diameter. In smooth muscle (SM), BK channels include channel-forming α and auxiliary β1 subunits. BK β1 increases the channel’s Ca2+ sensitivity, allowing BK channels to negatively feedback on depolarization-induced Ca2+ entry, oppose SM contraction and favor vasodilation. Thus, endothelial-independent vasodilation can be evoked though targeting of SM BK β1 by endogenous ligands, including lithocholate (LCA). Here, we investigated the expression of BK β1 across arteries of the cerebral and peripheral circulations, and the contribution of such expression to channel function and BK β1-mediated vasodilation. Data demonstrate that endothelium-independent, BK β1-mediated vasodilation by LCA is larger in coronary (CA) and basilar (BA) arteries than in anterior cerebral (ACA), middle cerebral (MCA), posterior cerebral (PCA), and mesenteric (MA) arteries, all arterial segments having a similar diameter. Thus, differential dilation occurs in extracranial arteries which are subjected to similar vascular pressure (CA vs. MA) and in arteries that irrigate different brain regions (BA vs. ACA, MCA, and PCA). SM BK channels from BA and CA displayed increased basal activity and LCA responses, indicating increased BK β1 functional presence. Indeed, in the absence of detectable changes in BK α, BA and CA myocytes showed an increased location of BK β1 in the plasmalemma/subplasmalemma. Moreover, these myocytes distinctly showed increased BK β1 messenger RNA (mRNA) levels. Supporting a major role of enhanced BK β1 transcripts in artery dilation, LCA-induced dilation of MCA transfected with BK β1 complementary DNA (cDNA) was as high as LCA-induced dilation of untransfected BA or CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amberg GC, Santana LF (2003) Downregulation of the BK channel beta1 subunit in genetic hypertension. Circ Res 93:965–971. doi:10.1161/01.RES.0000100068.43006.36

    Article  CAS  PubMed  Google Scholar 

  2. Amberg GC, Bonev AD, Rossow CF, Nelson MT, Santana LF (2003) Modulation of the molecular composition of large conductance, Ca(2+) activated K(+) channels in vascular smooth muscle during hypertension. J Clin Invest 112:717–724. doi:10.1172/jci18684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arab L, Liebeskind DS (2010) Tea, flavonoids and stroke in man and mouse. Arch Biochem Biophys 501:31–36. doi:10.1016/j.abb.2010.03.015

    Article  CAS  PubMed  Google Scholar 

  4. Bannister JP, Adebiyi A, Zhao G, Narayanan D, Thomas CM, Feng JY, Jaggar JH (2009) Smooth muscle cell alpha2delta-1 subunits are essential for vasoregulation by CaV1.2 channels. Circ Res 105:948–955. doi:10.1161/circresaha.109.203620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bao L, Cox DH (2005) Gating and ionic currents reveal how the BKCa channel’s Ca2+ sensitivity is enhanced by its beta1 subunit. The Journal of general physiology 126:393–412. doi:10.1085/jgp.200509346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barkoudah E, Jaggar JH, Leffler CW (2004) The permissive role of endothelial NO in CO-induced cerebrovascular dilation. Am J Phys Heart Circ Phys 287:H1459–H1465. doi:10.1152/ajpheart.00369.2004

    CAS  Google Scholar 

  7. Behrens R, Nolting A, Reimann F, Schwarz M, Waldschutz R, Pongs O (2000) hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett 474:99–106

    Article  CAS  PubMed  Google Scholar 

  8. Bomzon A, Ljubuncic P (1995) Bile acids as endogenous vasodilators? Biochem Pharmacol 49:581–589

    Article  CAS  PubMed  Google Scholar 

  9. Bomzon A, Finberg JP, Tovbin D, Naidu SG, Better OS (1984) Bile salts, hypotension and obstructive jaundice. Clinical science (London, England : 1979) 67:177–183

    Article  CAS  Google Scholar 

  10. Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535

    Article  CAS  PubMed  Google Scholar 

  11. Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000a) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275:6453–6461

    Article  CAS  PubMed  Google Scholar 

  12. Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW (2000b) Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407:870–876. doi:10.1038/35038011

    Article  CAS  PubMed  Google Scholar 

  13. Bukiya AN, Liu J, Toro L, Dopico AM (2007) Beta1 (KCNMB1) subunits mediate lithocholate activation of large-conductance Ca2+-activated K+ channels and dilation in small, resistance-size arteries. Mol Pharmacol 72:359–369. doi:10.1124/mol.107.034330

    Article  CAS  PubMed  Google Scholar 

  14. Bukiya AN, Vaithianathan T, Toro L, Dopico AM (2008) The second transmembrane domain of the large conductance, voltage- and calcium-gated potassium channel beta(1) subunit is a lithocholate sensor. FEBS Lett 582:673–678. doi:10.1016/j.febslet.2008.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bukiya AN, Liu J, Dopico AM (2009a) The BK channel accessory beta1 subunit determines alcohol-induced cerebrovascular constriction. FEBS Lett 583:2779–2784. doi:10.1016/j.febslet.2009.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bukiya AN, Vaithianathan T, Toro L, Dopico AM (2009b) Channel beta2-4 subunits fail to substitute for beta1 in sensitizing BK channels to lithocholate. Biochem Biophys Res Commun 390:995–1000. doi:10.1016/j.bbrc.2009.10.091

    Article  CAS  PubMed  Google Scholar 

  17. Bukiya AN, Singh AK, Parrill AL, Dopico AM (2011a) The steroid interaction site in transmembrane domain 2 of the large conductance, voltage- and calcium-gated potassium (BK) channel accessory beta1 subunit. Proc Natl Acad Sci U S A 108:20207–20212. doi:10.1073/pnas.1112901108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bukiya AN, Vaithianathan T, Kuntamallappanavar G, Asuncion-Chin M, Dopico AM (2011b) Smooth muscle cholesterol enables BK beta1 subunit-mediated channel inhibition and subsequent vasoconstriction evoked by alcohol. Arterioscler Thromb Vasc Biol 31:2410–2423. doi:10.1161/atvbaha.111.233965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bukiya AN, McMillan JE, Fedinec AL, Patil SA, Miller DD, Leffler CW, Parrill AL, Dopico AM (2013) Cerebrovascular dilation via selective targeting of the cholane steroid-recognition site in the BK channel beta1-subunit by a novel nonsteroidal agent. Mol Pharmacol 83:1030–1044. doi:10.1124/mol.112.083519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bukiya A, Dopico AM, Leffler CW, Fedinec A (2014) Dietary cholesterol protects against alcohol-induced cerebral artery constriction. Alcohol Clin Exp Res 38:1216–1226. doi:10.1111/acer.12373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ceryak S, Bouscarel B, Fromm H (1993) Comparative binding of bile acids to serum lipoproteins and albumin. J Lipid Res 34:1661–1674

    CAS  PubMed  Google Scholar 

  22. Chang J, Fedinec AL, Kuntamallappanavar G, Leffler CW, Bukiya AN, Dopico AM (2016) Endothelial nitric oxide mediates caffeine antagonism of alcohol-induced cerebral artery constriction. J Pharmacol Exp Ther 356:106–115. doi:10.1124/jpet.115.229054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen B, Ge Q, Xia XM, Liu P, Wang SJ, Zhan H, Eipper BA, Wang ZW (2010) A novel auxiliary subunit critical to BK channel function in Caenorhabditis elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience 30:16651–16661. doi:10.1523/jneurosci.3211-10.2010

    Article  CAS  Google Scholar 

  24. Cho L, Mukherjee D (2006) Basic cerebral anatomy for the carotid interventionalist: the intracranial and extracranial vessels. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions 68:104–111. doi:10.1002/ccd.20712

    Article  Google Scholar 

  25. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques 15:532–534 536-537

    CAS  PubMed  Google Scholar 

  26. Cipolla MJ, Curry AB (2002) Middle cerebral artery function after stroke: the threshold duration of reperfusion for myogenic activity. Stroke; a journal of cerebral circulation 33:2094–2099

    Article  Google Scholar 

  27. Cox DH, Aldrich RW (2000) Role of the beta1 subunit in large-conductance Ca(2+)-activated K(+) channel gating energetics. Mechanisms of enhanced Ca(2+) sensitivity. The Journal of general physiology 116:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dopico AM (2003) Ethanol sensitivity of BK(Ca) channels from arterial smooth muscle does not require the presence of the beta 1-subunit. American journal of physiology Cell physiology 284:C1468–C1480. doi:10.1152/ajpcell.00421.2002

    Article  CAS  PubMed  Google Scholar 

  29. Dopico AM, Bukiya AN (2014) Lipid regulation of BK channel function. Front Physiol 5:312. doi:10.3389/fphys.2014.00312

    PubMed  PubMed Central  Google Scholar 

  30. Dopico AM, Kirber MT, Singer JJ, Walsh JV Jr (1994) Membrane stretch directly activates large conductance Ca(2+)-activated K+ channels in mesenteric artery smooth muscle cells. Am J Hypertens 7:82–89

    CAS  PubMed  Google Scholar 

  31. Dopico AM, Anantharam V, Treistman SN (1998) Ethanol increases the activity of Ca(++)-dependent K+ (mslo) channels: functional interaction with cytosolic Ca++. J Pharmacol Exp Ther 284:258–268

    CAS  PubMed  Google Scholar 

  32. Fernandez-Fernandez JM, Tomas M, Vazquez E, Orio P, Latorre R, Senti M, Marrugat J, Valverde MA (2004) Gain-of-function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension. J Clin Invest 113:1032–1039. doi:10.1172/jci20347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug design, development and therapy 9:3445–3454. doi:10.2147/dddt.s56071

    PubMed  PubMed Central  Google Scholar 

  34. Geary GG, Osol GJ, Longo LD (2004) Development affects in vitro vascular tone and calcium sensitivity in ovine cerebral arteries. J Physiol 558:883–896. doi:10.1113/jphysiol.2003.056945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gollasch M, Wellman GC, Knot HJ, Jaggar JH, Damon DH, Bonev AD, Nelson MT (1998) Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events. Circ Res 83:1104–1114

    Article  CAS  PubMed  Google Scholar 

  36. Gray H, Bannister LH, Berry MM, Williams PL (1995) Gray’s anatomy, the anatomical basis of surgery and medicne, 38th edn. Elsevier Science, New York

    Google Scholar 

  37. Greco AV, Mingrone G (1993) Serum bile acid concentrations in mild liver cirrhosis. Clinica chimica acta; international journal of clinical chemistry 221:183–189

    Article  CAS  PubMed  Google Scholar 

  38. Greene, EC (1963) Anatomy of the Rat. Hafner

  39. Guldutuna S, Leuschner M, Wunderlich N, Nickel A, Bhatti S, Hubner K, Leuschner U (1993a) Cholic acid and ursodeoxycholic acid therapy in primary biliary cirrhosis. Changes in bile acid patterns and their correlation with liver function. Eur J Clin Pharmacol 45:221–225

    Article  CAS  PubMed  Google Scholar 

  40. Guldutuna S, You T, Kurts W, Leuschner U (1993b) High performance liquid chromatographic determination of free and conjugated bile acids in serum, liver biopsies, bile, gastric juice and feces by fluorescence labeling. Clinica chimica acta; international journal of clinical chemistry 214:195–207

    Article  CAS  PubMed  Google Scholar 

  41. Hamdan H, Stacey NH (1993) Mechanism of trichloroethylene-induced elevation of individual serum bile acids. I. Correlation of trichloroethylene concentrations to bile acids in rat serum. Toxicol Appl Pharmacol 121:291–295. doi:10.1006/taap.1993.1156

    Article  CAS  PubMed  Google Scholar 

  42. Howitt L, Sandow SL, Grayson TH, Ellis ZE, Morris MJ, Murphy TV (2011) Differential effects of diet-induced obesity on BKCa {beta}1-subunit expression and function in rat skeletal muscle arterioles and small cerebral arteries. Am J Phys Heart Circ Phys 301:H29–H40. doi:10.1152/ajpheart.00134.2011

    CAS  Google Scholar 

  43. Jaggar JH, Porter VA, Lederer WJ, Nelson MT (2000) Calcium sparks in smooth muscle. American journal of physiology Cell physiology 278:C235–C256

    CAS  PubMed  Google Scholar 

  44. Jonsson G, Hedenborg G, Wisen O, Norman A (1992a) Presence of bile acid metabolites in serum, urine, and faeces in cirrhosis. Scand J Clin Lab Invest 52:555–564

    Article  CAS  PubMed  Google Scholar 

  45. Jonsson G, Hedenborg G, Wisen O, Norman A (1992b) Serum concentrations and excretion of bile acids in cirrhosis. Scand J Clin Lab Invest 52:599–605

    Article  CAS  PubMed  Google Scholar 

  46. Knaus HG, Folander K, Garcia-Calvo M, Garcia ML, Kaczorowski GJ, Smith M, Swanson R (1994) Primary sequence and immunological characterization of beta-subunit of high conductance Ca(2+)-activated K+ channel from smooth muscle. J Biol Chem 269:17274–17278

    CAS  PubMed  Google Scholar 

  47. Knot HJ, Nelson MT (1998) Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 508(Pt 1):199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Korman MG, Hofmann AF, Summerskill WH (1974) Assessment of activity in chronic active liver disease. Serum bile acids compared with conventional tests and histology. N Engl J Med 290:1399–1402. doi:10.1056/nejm197406202902503

    Article  CAS  PubMed  Google Scholar 

  49. Kuntamallappanavar G, Dopico AM (2016) Alcohol modulation of BK channel gating depends on beta subunit composition. The Journal of general physiology 148:419–440. doi:10.1085/jgp.201611594

    Article  PubMed  Google Scholar 

  50. Kuntamallappanavar G, Toro L, Dopico AM (2014) Both transmembrane domains of BK beta1 subunits are essential to confer the normal phenotype of beta1-containing BK channels. PLoS One 9:e109306. doi:10.1371/journal.pone.0109306

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ledoux J, Werner ME, Brayden JE, Nelson MT (2006) Calcium-activated potassium channels and the regulation of vascular tone. Physiology 21:69–78. doi:10.1152/physiol.00040.2005

    Article  CAS  PubMed  Google Scholar 

  52. Lee RM (1995) Morphology of cerebral arteries. Pharmacol Ther 66:149–173

    Article  CAS  PubMed  Google Scholar 

  53. Legos JJ, Tuma RF, Barone FC (2002) Pharmacological interventions for stroke: failures and future. Expert opinion on investigational drugs 11:603–614. doi:10.1517/13543784.11.5.603

    Article  CAS  PubMed  Google Scholar 

  54. Leo MD, Bannister JP, Narayanan D, Nair A, Grubbs JE, Gabrick KS, Boop FA, Jaggar JH (2014) Dynamic regulation of beta1 subunit trafficking controls vascular contractility. Proc Natl Acad Sci U S A 111:2361–2366. doi:10.1073/pnas.1317527111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lewis B, Tabaqchali S, Panveliwalla D, Wootton ID (1969) Serum-bile-acids in the stagnant-loop syndrome. Lancet 1:219–220

    Article  CAS  PubMed  Google Scholar 

  56. Li B, Jie W, Huang L, Wei P, Li S, Luo Z, Friedman AK, Meredith AL, Han MH, Zhu XH, Gao TM (2014) Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling. Nat Neurosci 17:1055–1063. doi:10.1038/nn.3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lindblad L, Lundholm K, Schersten T (1977) Bile acid concentrations in systemic and portal serum in presumably normal man and in cholestatic and cirrhotic conditions. Scand J Gastroenterol 12:395–400

    Article  CAS  PubMed  Google Scholar 

  58. Liu P, Xi Q, Ahmed A, Jaggar JH, Dopico AM (2004) Essential role for smooth muscle BK channels in alcohol-induced cerebrovascular constriction. Proc Natl Acad Sci U S A 101:18217–18222. doi:10.1073/pnas.0406096102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif) 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  60. Marijic J, Li Q, Song M, Nishimaru K, Stefani E, Toro L (2001) Decreased expression of voltage- and Ca(2+)-activated K(+) channels in coronary smooth muscle during aging. Circ Res 88:210–216

    Article  CAS  PubMed  Google Scholar 

  61. McGahon MK, Zhang X, Scholfield CN, Curtis TM, McGeown JG (2007) Selective downregulation of the BKbeta1 subunit in diabetic arteriolar myocytes. Channels (Austin) 1:141–143

    Article  Google Scholar 

  62. McMillan JE, Bukiya AN, Terrell CL, Patil SA, Miller DD, Dopico AM, Parrill AL (2014) Multi-generational pharmacophore modeling for ligands to the cholane steroid-recognition site in the beta(1) modulatory subunit of the BKCa channel. Journal of molecular graphics & modelling 54:174–183. doi:10.1016/j.jmgm.2014.10.008

    Article  CAS  Google Scholar 

  63. McMillin M, DeMorrow S (2016) Effects of bile acids on neurological function and disease. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 30:3658–3668. doi:10.1096/fj.201600275R

    Article  CAS  Google Scholar 

  64. Meera P, Wallner M, Jiang Z, Toro L (1996) A calcium switch for the functional coupling between alpha (hslo) and beta subunits (KV,Ca beta) of maxi K channels. FEBS Lett 382:84–88

    Article  CAS  PubMed  Google Scholar 

  65. Meera P, Wallner M, Toro L (2000) A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 97:5562–5567. doi:10.1073/pnas.100118597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nimigean CM, Magleby KL (1999) The beta subunit increases the Ca2+ sensitivity of large conductance Ca2+-activated potassium channels by retaining the gating in the bursting states. The Journal of general physiology 113:425–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nimigean CM, Magleby KL (2000) Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism. The Journal of general physiology 115:719–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nishimaru K, Eghbali M, Lu R, Marijic J, Stefani E, Toro L (2004) Functional and molecular evidence of MaxiK channel beta1 subunit decrease with coronary artery ageing in the rat. J Physiol 559:849–862. doi:10.1113/jphysiol.2004.068676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Orio P, Latorre R (2005) Differential effects of beta 1 and beta 2 subunits on BK channel activity. The Journal of general physiology 125:395–411. doi:10.1085/jgp.200409236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Orio P, Rojas P, Ferreira G, Latorre R (2002) New disguises for an old channel: MaxiK channel beta-subunits. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society 17:156–161

    CAS  Google Scholar 

  71. Ostrow J (1993) Metabolism of bile salts in cholestasis in humans. In: Hepatic transport and bile secretion: physiology and pathophysiology. Raven Press, New York

  72. Pak JM, Lee SS (1993) Vasoactive effects of bile salts in cirrhotic rats: in vivo and in vitro studies. Hepatology (Baltimore, Md) 18:1175–1181

    CAS  Google Scholar 

  73. Patil S, Bukiya AN, Li W, Dopico AM, Miller D (2008) Design and synthesis of hydroxy-alkynoic acids and their methyl esters as novel activators of BK channels. Bioorg Med Chem Lett 18:3427–3430. doi:10.1016/j.bmcl.2008.03.080

    Article  CAS  PubMed  Google Scholar 

  74. Patterson AJ, Henrie-Olson J, Brenner R (2002) Vasoregulation at the molecular level: a role for the beta1 subunit of the calcium-activated potassium (BK) channel. Trends in cardiovascular medicine 12:78–82

    Article  CAS  PubMed  Google Scholar 

  75. Perez GJ, Bonev AD, Nelson MT (2001) Micromolar Ca(2+) from sparks activates Ca(2+)-sensitive K(+) channels in rat cerebral artery smooth muscle. American journal of physiology Cell physiology 281:C1769–C1775

    CAS  PubMed  Google Scholar 

  76. Scharschmidt BF, Blanckaert N, Farina FA, Kabra PM, Stafford BE, Weisiger RA (1982) Measurement of serum bilirubin and its mono- and diconjugates: application to patients with hepatobiliary disease. Gut 23:643–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Senti M, Fernandez-Fernandez JM, Tomas M, Vazquez E, Elosua R, Marrugat J, Valverde MA (2005) Protective effect of the KCNMB1 E65K genetic polymorphism against diastolic hypertension in aging women and its relevance to cardiovascular risk. Circ Res 97:1360–1365. doi:10.1161/01.res.0000196557.93717.95

    Article  CAS  PubMed  Google Scholar 

  78. Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257:549–554

    Article  CAS  PubMed  Google Scholar 

  79. Singh H, Lu R, Bopassa JC, Meredith AL, Stefani E, Toro L (2013) MitoBK(Ca) is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location. Proc Natl Acad Sci U S A 110:10836–10841. doi:10.1073/pnas.1302028110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Soni H, Buddington RK, Adebiyi A (2015) Postnatal kidney maturation regulates renal artery myogenic constriction. J Perinat Med 43:119–122. doi:10.1515/jpm-2013-0346

    CAS  PubMed  Google Scholar 

  81. Tarantino G, Cambri S, Ferrara A, Marzano M, Liberti A, Vellone G, Ciccarelli AFL (1989) Concentrazione sierica degli acidi biliari e ipertensione portale di pazienti cirrotici. Possibile correlazione. Eur Rev Med Pharmacol Sci 11:195–205

    CAS  Google Scholar 

  82. Toro L, Marijic J, Nishimaru K, Tanaka Y, Song M, Stefani E (2002) Aging, ion channel expression, and vascular function. Vasc Pharmacol 38:73–80

    Article  CAS  Google Scholar 

  83. Torres YP, Granados ST, Latorre R (2014) Pharmacological consequences of the coexpression of BK channel alpha and auxiliary beta subunits. Front Physiol 5:383. doi:10.3389/fphys.2014.00383

    Article  PubMed  PubMed Central  Google Scholar 

  84. Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, McKenna E, Austin CP, Bennett PB, Swanson R (2000) Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. J Biol Chem 275:23211–23218. doi:10.1074/jbc.M910187199

    Article  CAS  PubMed  Google Scholar 

  85. Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C, Latorre R (1999) Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science 285:1929–1931

    Article  CAS  PubMed  Google Scholar 

  86. Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc Natl Acad Sci U S A 96:4137–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang-Fischer, Y KL (2009) Animal models of ischemic stroke: a historical survey. Manual of Stroke Models in Rats: 5–11

  88. Wang YW, Ding JP, Xia XM, Lingle CJ (2002) Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:1550–1561

    CAS  Google Scholar 

  89. Xia XM, Ding JP, Lingle CJ (1999) Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 19:5255–5264

    CAS  Google Scholar 

  90. Yang Y, Sohma Y, Nourian Z, Ella SR, Li M, Stupica A, Korthuis RJ, Davis MJ, Braun AP, Hill MA (2013) Mechanisms underlying regional differences in the Ca2+ sensitivity of BK(Ca) current in arteriolar smooth muscle. J Physiol 591:1277–1293. doi:10.1113/jphysiol.2012.241562

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ye CL, Shen B, Ren XD, Luo RJ, Ding SY, Yan FM, Jiang JH (2004) An increase in opening of BK(Ca) channels in smooth muscle cells in streptozotocin-induced diabetic mice. Acta Pharmacol Sin 25:744–750

    CAS  PubMed  Google Scholar 

  92. Yi F, Wang H, Chai Q, Wang X, Shen WK, Willis MS, Lee HC, Lu T (2014) Regulation of large conductance Ca2+-activated K+ (BK) channel beta1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem 289:10853–10864. doi:10.1074/jbc.M113.520940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng YM, Park SW, Stokes L, Tang Q, Xiao JH, Wang YX (2013) Distinct activity of BK channel beta1-subunit in cerebral and pulmonary artery smooth muscle cells. American journal of physiology Cell physiology 304:C780–C789. doi:10.1152/ajpcell.00006.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou Y, Schopperle WM, Murrey H, Jaramillo A, Dagan D, Griffith LC, Levitan IB (1999) A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron 22:809–818

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Bangalore Shivakumar and Maria T. Asuncion-Chin for their excellent technical assistance. This work was supported by an American Heart Association Predoctoral Fellowship (to G.K.) and the National Institutes of Health grants R37AA11560 and R01HL104631 (to A.M.D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex M. Dopico.

Ethics declarations

This procedure was approved by the Institutional Animal Care and Use Committee from the University of Tennessee Health Science Center (UTHSC), an AAALAC accredited institution.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuntamallappanavar, G., Bisen, S., Bukiya, A.N. et al. Differential distribution and functional impact of BK channel beta1 subunits across mesenteric, coronary, and different cerebral arteries of the rat. Pflugers Arch - Eur J Physiol 469, 263–277 (2017). https://doi.org/10.1007/s00424-016-1929-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1929-z

Keywords

Navigation