Skip to main content

Advertisement

Log in

Corticomedullary difference in the effects of dietary Ca2+ on tight junction properties in thick ascending limbs of Henle’s loop

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The thick ascending limb of Henle’s loop (TAL) drives an important part of the reabsorption of divalent cations. This reabsorption occurs via the paracellular pathway formed by the tight junction (TJ), which in the TAL shows cation selectivity. Claudins, a family of TJ proteins, determine the permeability and selectivity of this pathway. Mice were fed with normal or high-Ca2+ diet, and effects on the reabsorptive properties of cortical and medullary TAL segments were analysed by tubule microdissection and microperfusion. Claudin expression was investigated by immunostaining and quantitative PCR. We show that the TAL adapted to high Ca2+ load in a sub-segment-specific manner. In medullary TAL, transcellular NaCl transport was attenuated. The transepithelial voltage decreased from 10.9 ± 0.6 mV at control diet to 8.3 ± 0.5 mV at high Ca2+ load, thereby reducing the driving force for Ca2+ and Mg2+ uptake. Cortical TAL showed a reduction in paracellular Ca2+ and Mg2+ permeabilities from 8.2 ± 0.7 to 6.2 ± 0.5 ∙ 10−4 cm/s and from 4.8 ± 0.5 to 3.0 ± 0.2 · 10−4 cm/s at control and high-Ca2+ diet, respectively. Expression, localisation and regulation of claudins 10, 14, 16 and 19 differed along the corticomedullary axis: Towards the cortex, the main site of divalent cation reabsorption in TAL, high-Ca2+ intake led to a strong upregulation of claudin-14 within TAL TJs while claudin-16 and -19 were unaltered. Towards the inner medulla, only claudin-10 was present in TAL TJ strands. In summary, high-Ca2+ diet induced a reduction of divalent cation reabsorption via a diminution of NaCl transport and driving force in mTAL and via decreased paracellular permeabilities in cTAL. We reveal an important regulatory pattern along the corticomedullary axis and improve the understanding how the kidney disposes of detrimental excess Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bailly C, Imbert-Teboul M, Roinel N, Amiel C (1990) Isoproterenol increases Ca, Mg, and NaCl reabsorption in mouse thick ascending limb. Am J Physiol 258:F1224–1231

    PubMed  CAS  Google Scholar 

  2. Barry PH, Lynch JW (1991) Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol 121:101–117

    Article  PubMed  CAS  Google Scholar 

  3. Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061

    Article  PubMed  CAS  Google Scholar 

  4. Bleich M, Shan Q, Himmerkus N (2012) Calcium regulation of tight junction permeability. Ann N Y Acad Sci 1258:93–99

    Article  PubMed  CAS  Google Scholar 

  5. Borschewski A, Himmerkus N, Boldt C, Blankenstein KI, McCormick JA, Lazelle R, Willnow TE, Jankowski V, Plain A, Bleich M, Ellison DH, Bachmann S, Mutig K (2015) Calcineurin and Sorting-Related Receptor with A-Type Repeats Interact to Regulate the Renal Na+−K+−2Cl- Cotransporter. J Am Soc Nephrol. doi:10.1681/ASN.2014070728

  6. Breiderhoff T, Himmerkus N, Stuiver M, Mutig K, Will C, Meij IC, Bachmann S, Bleich M, Willnow TE, Müller D (2012) Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc Natl Acad Sci U S A 109:14241–14246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. de Rouffignac C, Quamme G (1994) Renal magnesium handling and its hormonal control. Physiol Rev 74:305–322

    PubMed  Google Scholar 

  8. Di Stefano A, Roinel N, de Rouffignac C, Wittner M (1993) Transepithelial Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle's loop of the mouse is a voltage-dependent process. Ren Physiol Biochem 16:157–166

    PubMed  Google Scholar 

  9. Di Stefano A, Wittner M, Nitschke R, Braitsch R, Greger R, Bailly C, Amiel C, Elalouf JM, Roinel N, de Rouffignac C (1989) Effects of glucagon on Na+, Cl-, K+, Mg2+ and Ca2+ transports in cortical and medullary thick ascending limbs of mouse kidney. Pflugers Arch 414:640–646

    Article  PubMed  Google Scholar 

  10. Di Stefano A, Wittner M, Nitschke R, Braitsch R, Greger R, Bailly C, Amiel C, Roinel N, de Rouffignac C (1990) Effects of parathyroid hormone and calcitonin on Na+, Cl-, K+, Mg2+ and Ca2+ transport in cortical and medullary thick ascending limbs of mouse kidney. Pflugers Arch 417:161–167

    Article  PubMed  Google Scholar 

  11. Dimke H, Desai P, Borovac J, Lau A, Pan W, Alexander RT (2013) Activation of the Ca(2+)-sensing receptor increases renal claudin-14 expression and urinary Ca(2+) excretion. Am J Physiol Renal Physiol 304:F761–769

    Article  PubMed  CAS  Google Scholar 

  12. Elkouby-Naor L, Abassi Z, Lagziel A, Gow A, Ben-Yosef T (2008) Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins. Cell Tissue Res 333:427–438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Gamba G, Friedman PA (2009) Thick ascending limb: the Na(+):K (+):2Cl (−) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch 458:61–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Gong Y, Himmerkus N, Plain A, Bleich M, Hou J (2015) Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J Am Soc Nephrol 26:663–676

    Article  PubMed  CAS  Google Scholar 

  15. Gong Y, Hou J (2014) Claudin-14 underlies Ca(+)(+)-sensing receptor-mediated Ca(+)(+) metabolism via NFAT-microRNA-based mechanisms. J Am Soc Nephrol 25:745–760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, Hou J (2012) Claudin-14 regulates renal Ca(+)(+) transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 31:1999–2012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Greger R (1981) Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 390:30–37

    Article  PubMed  CAS  Google Scholar 

  18. Günzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, Meij IC, Hunziker W, Fromm M, Muller D (2009) Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci 122:1507–1517

    Article  PubMed  Google Scholar 

  19. Günzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hannan FM, Thakker RV (2013) Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract Res Clin Endocrinol Metab 27:359–371

    Article  PubMed  CAS  Google Scholar 

  21. Hebert SC, Andreoli TE (1986) Ionic conductance pathways in the mouse medullary thick ascending limb of Henle. The paracellular pathway and electrogenic Cl- absorption. J Gen Physiol 87:567–590

    Article  PubMed  CAS  Google Scholar 

  22. Himmerkus N, Shan Q, Goerke B, Hou J, Goodenough DA, Bleich M (2008) Salt and acid–base metabolism in claudin-16 knockdown mice: impact for the pathophysiology of FHHNC patients. Am J Physiol Renal Physiol 295:F1641–1647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Hoek AC, Lemmens AG, Mullink JW, Beynen AC (1988) Influence of dietary calcium:phosphorus ratio on mineral excretion and nephrocalcinosis in female rats. J Nutr 118:1210–1216

    PubMed  CAS  Google Scholar 

  24. Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA (2009) Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 106:15350–15355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA (2007) Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem 282:17114–17122

    Article  PubMed  CAS  Google Scholar 

  26. Kimizuka H, Koketsu K (1964) Ion transport through cell membrane. J Theor Biol 6:290–305

    Article  PubMed  CAS  Google Scholar 

  27. Kirk A, Campbell S, Bass P, Mason J, Collins J (2010) Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrol Dial Transplant 25:2107–2119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    PubMed  CAS  Google Scholar 

  29. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Loupy A, Ramakrishnan SK, Wootla B, Chambrey R, de la Faille R, Bourgeois S, Bruneval P, Mandet C, Christensen EI, Faure H, Cheval L, Laghmani K, Collet C, Eladari D, Dodd RH, Ruat M, Houillier P (2012) PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest 122:3355–3367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Matsubara M (2004) Renal sodium handling for body fluid maintenance and blood pressure regulation. Yakugaku Zasshi 124:301–309

    Article  PubMed  CAS  Google Scholar 

  32. Ng B, Barry PH (1995) The measurement of ionic conductivities and mobilities of certain less common organic ions needed for junction potential corrections in electrophysiology. J Neurosci Methods 56:37–41

    Article  PubMed  CAS  Google Scholar 

  33. Ohta H, Adachi H, Takiguchi M, Inaba M (2006) Restricted localization of claudin-16 at the tight junction in the thick ascending limb of Henle's loop together with claudins 3, 4, and 10 in bovine nephrons. J Vet Med Sci 68:453–463

    Article  PubMed  CAS  Google Scholar 

  34. Peterson CA, Baker DH, Erdman JW Jr (1996) Diet-induced nephrocalcinosis in female rats is irreversible and is induced primarily before the completion of adolescence. J Nutr 126:259–265

    PubMed  CAS  Google Scholar 

  35. Schaafsma G, Duursma SA, Visser WJ, Dekker PR (1985) The influence of dietary calcium on kidney calcification and renal function in rats fed high-phosphate diets. Bone 6:155–163

    Article  PubMed  CAS  Google Scholar 

  36. Shan Q, Himmerkus N, Hou J, Goodenough DA, Bleich M (2009) Insights into driving forces and paracellular permeability from claudin-16 knockdown mouse. Ann N Y Acad Sci 1165:148–151

    Article  PubMed  CAS  Google Scholar 

  37. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    Article  PubMed  CAS  Google Scholar 

  38. Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, Sulem P, Halldorsson BV, de Vegt F, d'Ancona FC, den Heijer M, Franzson L, Christiansen C, Alexandersen P, Rafnar T, Kristjansson K, Sigurdsson G, Kiemeney LA, Bodvarsson M, Indridason OS, Palsson R, Kong A, Thorsteinsdottir U, Stefansson K (2009) Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 41:926–930

    Article  PubMed  CAS  Google Scholar 

  39. Toka HR, Pollak MR, Houillier P (2015) Calcium Sensing in the Renal Tubule. Physiology (Bethesda) 30:317–326

    CAS  Google Scholar 

  40. Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM (2006) Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 291:F1288–1299

    Article  PubMed  Google Scholar 

  41. Will C, Breiderhoff T, Thumfart J, Stuiver M, Kopplin K, Sommer K, Günzel D, Querfeld U, Meij IC, Shan Q, Bleich M, Willnow TE, Müller D (2010) Targeted deletion of murine Cldn16 identifies extra- and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. Am J Physiol Renal Physiol 298:F1152–1161

    Article  PubMed  CAS  Google Scholar 

  42. Wittner M, di Stefano A, Wangemann P, Nitschke R, Greger R, Bailly C, Amiel C, Roinel N, de Rouffignac C (1988) Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron. Pflugers Arch 412:516–523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kerim Mutig (Charité, Berlin) for kindly providing the NKCC2 antibody.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the Christian-Albrechts-University Kiel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Himmerkus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primers applied for Real Time PCR (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plain, A., Wulfmeyer, V.C., Milatz, S. et al. Corticomedullary difference in the effects of dietary Ca2+ on tight junction properties in thick ascending limbs of Henle’s loop. Pflugers Arch - Eur J Physiol 468, 293–303 (2016). https://doi.org/10.1007/s00424-015-1748-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1748-7

Keywords

Navigation