Skip to main content
Log in

Evidence against a Ca2+-induced potentiation of dehydrogenase activity in pancreatic beta-cells

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Pancreatic beta-cells respond to an unchanging stimulatory glucose concentration with oscillations in membrane potential (Vm), cytosolic Ca2+ concentration ([Ca2+]c), and insulin secretion. The underlying mechanisms are largely ascertained. Some particular details, however, are still in debate. Stimulus-secretion coupling (SSC) of beta-cells comprises glucose-induced Ca2+ influx into the cytosol and thus into mitochondria. It is suggested that this activates (mitochondrial) dehydrogenases leading to an increase in reduction equivalents and ATP production. According to SSC, a glucose-induced increase in ATP production would thus further augment ATP production, i.e. induce a feed-forward loop that is hardly compatible with oscillations. Consistently, other studies favour a feedback mechanism that drives oscillatory mitochondrial ATP production. If Ca2+ influx activates dehydrogenases, a change in [Ca2+]c should increase the concentration of reduction equivalents. We measured changes in flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) autofluorescence in response to changes in glucose concentration or glucose-independent changes in [Ca2+]c. The FAD signal was altered by glucose but not by alterations in [Ca2+]c. NAD(P)H was increased by glucose but even decreased by Ca2+ influx evoked by tolbutamide. The mitochondrial membrane potential ΔΨ was hyperpolarized by 4 mM glucose. As adding tolbutamide then depolarized ΔΨ, we deduce that Ca2+ does not activate mitochondrial activity but by contrast even inhibits it by reducing the driving force for ATP production. Inhibition of Ca2+ influx reversed the Ca2+-induced changes in ΔΨ and NAD(P)H. The results are consistent with a feedback mechanism which transiently and repeatedly reduces ATP production and explain the oscillatory activity of pancreatic beta-cells at increased glucose concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alam MR, Groschner LN, Parichatikanond W, Kuo L, Bondarenko AI, Rost R, Waldeck-Weiermair M, Malli R, Graier WF (2012) Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial Ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic beta-cells. J Biol Chem 287(41):34445–34454. doi:10.1074/jbc.M112.392084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Belz M, Willenborg M, Gorgler N, Hamada A, Schumacher K, Rustenbeck I (2014) Insulinotropic effect of high potassium concentration beyond plasma membrane depolarization. Am J Physiol Endocrinol Metab 306(6):E697–706. doi:10.1152/ajpendo.00362.2013

    Article  CAS  PubMed  Google Scholar 

  3. Bergsten P, Grapengiesser E, Gylfe E, Tengholm A, Hellman B (1994) Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem 269(12):8749–8753

    CAS  PubMed  Google Scholar 

  4. Brandman O, Meyer T (2008) Feedback loops shape cellular signals in space and time. Science 322(5900):390–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Civelek VN, Deeney JT, Shalosky NJ, Tornheim K, Hansford RG, Prentki M, Corkey BE (1996) Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP. Biochem J 318(Pt 2):615–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. De Marchi U, Thevenet J, Hermant A, Dioum E, Wiederkehr A (2014) Calcium co-regulates oxidative metabolism and ATP synthase-dependent respiration in pancreatic beta cells. J Biol Chem 289(13):9182–9194

    Article  PubMed Central  PubMed  Google Scholar 

  7. Dean PM, Matthews EK (1968) Electrical activity in pancreatic islet cells. Nature 219(5152):389–390

    Article  CAS  PubMed  Google Scholar 

  8. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316. doi:10.1016/j.bbabio.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  9. Detimary P, Dejonghe S, Ling Z, Pipeleers D, Schuit F, Henquin JC (1998) The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J Biol Chem 273(51):33905–33908

    Article  CAS  PubMed  Google Scholar 

  10. Detimary P, Gilon P, Henquin JC (1998) Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem J 333(Pt 2):269–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Drews G, Krippeit-Drews P, Düfer M (2015) Electrophysiology of islet cells. In: Islam MS (ed) Islets of Langerhans, vol 1, 2nd edn. Springer Dordrecht, Heidelberg, pp 249–303. doi:10.1007/978-94-007-6686-0_5

    Google Scholar 

  12. Duchen MR, Smith PA, Ashcroft FM (1993) Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem J 294(Pt 1):35–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Düfer M, Gier B, Wolpers D, Krippeit-Drews P, Ruth P, Drews G (2009) Enhanced glucose tolerance by SK4 channel inhibition in pancreatic beta-cells. Diabetes 58:1835–1843

    Article  PubMed Central  PubMed  Google Scholar 

  14. Düfer M, Haspel D, Krippeit-Drews P, Kelm M, Ranta F, Nitschke R, Ullrich S, Aguilar-Bryan L, Bryan J, Drews G (2007) The KATP channel is critical for calcium sequestration into non-ER compartments in mouse pancreatic beta cells. Cell Physiol Biochem 20(1–4):65–74

    PubMed  Google Scholar 

  15. Düfer M, Noack K, Krippeit-Drews P, Drews G (2010) Activation of the AMP-activated protein kinase enhances glucose-stimulated insulin secretion in mouse beta-cells. Islets 2(3):156–163

    Article  PubMed  Google Scholar 

  16. Dyachok O, Isakov Y, Sagetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439(7074):349–352. doi:10.1038/nature04410

    Article  CAS  PubMed  Google Scholar 

  17. Gilon P, Shepherd RM, Henquin JC (1993) Oscillations of secretion driven by oscillations of cytoplasmic Ca2+ as evidences in single pancreatic islets. J Biol Chem 268(30):22265–22268

    CAS  PubMed  Google Scholar 

  18. Goehring I, Gerencser AA, Schmidt S, Brand MD, Mulder H, Nicholls DG (2012) Plasma membrane potential oscillations in insulin secreting Ins-1 832/13 cells do not require glycolysis and are not initiated by fluctuations in mitochondrial bioenergetics. J Biol Chem 287(19):15706–15717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Göpel SO, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renstrom E, Rorsman P (1999) Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 114(6):759–770

    Article  PubMed Central  PubMed  Google Scholar 

  20. Grapengiesser E, Gylfe E, Hellman B (1988) Dual effect of glucose on cytoplasmic Ca2+ in single pancreatic beta-cells. Biochem Biophys Res Commun 150(1):419–425

    Article  CAS  PubMed  Google Scholar 

  21. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  22. Hagren OI, Tengholm A (2006) Glucose and insulin synergistically activate phosphatidylinositol 3-kinase to trigger oscillations of phosphatidylinositol 3,4,5-trisphosphate in beta-cells. J Biol Chem 281(51):39121–39127. doi:10.1074/jbc.M607445200

    Article  CAS  PubMed  Google Scholar 

  23. Henquin JC (1990) Cellular mechanisms of the control of insulin secretion. Arch Int Physiol Biochim 98(3):A61–80

    CAS  PubMed  Google Scholar 

  24. Jung SK, Kauri LM, Qian WJ, Kennedy RT (2000) Correlated oscillations in glucose consumption, oxygen consumption, and intracellular free Ca(2+) in single islets of Langerhans. J Biol Chem 275(9):6642–6650

    Article  CAS  PubMed  Google Scholar 

  25. Kennedy ED, Rizzuto R, Theler JM, Pralong WF, Bastianutto C, Pozzan T, Wollheim CB (1996) Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells. J Clin Invest 98(11):2524–2538. doi:10.1172/JCI119071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kennedy ED, Wollheim CB (1998) Role of mitochondrial calcium in metabolism-secretion coupling in nutrient-stimulated insulin release. Diabetes Metab 24(1):15–24

    CAS  PubMed  Google Scholar 

  27. Kennedy RT, Kauri LM, Dahlgren GM, Jung SK (2002) Metabolic oscillations in beta-cells. Diabetes 51(Suppl 1):S152–161

    Article  CAS  PubMed  Google Scholar 

  28. Kindmark H, Köhler M, Brown G, Bränström R, Larsson O, Berggren PO (2001) Glucose-induced oscillations in cytoplasmic free Ca2+ concentration precede oscillations in mitochondrial membrane potential in the pancreatic beta-cell. J Biol Chem 276(37):34530–34536. doi:10.1074/jbc.M102492200

    Article  CAS  PubMed  Google Scholar 

  29. Köhler M, Norgren S, Berggren PO, Fredholm BB, Larsson O, Rhodes CJ, Herbert TP, Luthman H (1998) Changes in cytoplasmic ATP concentration parallels changes in ATP-regulated K+-channel activity in insulin-secreting cells. FEBS Lett 441(1):97–102

    Article  PubMed  Google Scholar 

  30. Krippeit-Drews P, Düfer M, Drews G (2000) Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem Biophys Res Commun 267(1):179–183. doi:10.1006/bbrc.1999.1921

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Shuai HY, Gylfe E, Tengholm A (2013) Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca(2+). Diabetologia 56(7):1577–1586. doi:10.1007/s00125-013-2894-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Longo EA, Tornheim K, Deeney JT, Varnum BA, Tillotson D, Prentki M, Corkey BE (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem 266(14):9314–9319

    CAS  PubMed  Google Scholar 

  33. Luciani DS, Misler S, Polonsky KS (2006) Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J Physiol 572(Pt 2):379–392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. MacDonald MJ, Brown LJ (1996) Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch Biochem Biophys 326(1):79–84. doi:10.1006/abbi.1996.0049

    Article  CAS  PubMed  Google Scholar 

  35. Malaisse WJ, Sener A (1991) Hexose metabolism in pancreatic islets. Activation of the Krebs cycle by nutrient secretagogues. Mol Cell Biochem 107(2):95–102

    Article  CAS  PubMed  Google Scholar 

  36. McCormack JG, Longo EA, Corkey BE (1990) Glucose-induced activation of pyruvate dehydrogenase in isolated rat pancreatic islets. Biochem J 267(2):527–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Meissner HP, Schmidt H (1976) The electrical activity of pancreatic beta-cells of diabetic mice. FEBS Lett 67(3):371–374

    Article  CAS  PubMed  Google Scholar 

  38. Rolland JF, Henquin JC, Gilon P (2002) Feedback control of the ATP-sensitive K+ current by cytosolic Ca2+ contributes to oscillations of the membrane potential in pancreatic beta-cells. Diabetes 51(2):376–384

    Article  CAS  PubMed  Google Scholar 

  39. Rorsman P, Braun M (2013) Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol 75:155–179. doi:10.1146/annurev-physiol-030212-183754

    Article  CAS  PubMed  Google Scholar 

  40. Rorsman P, Eliasson L, Kanno T, Zhang Q, Gopel S (2011) Electrophysiology of pancreatic beta-cells in intact mouse islets of Langerhans. Prog Biophys Mol Biol 107(2):224–235

    Article  CAS  PubMed  Google Scholar 

  41. Rorsman P, Eliasson L, Renstrom E, Gromada J, Barg S, Gopel S (2000) The cell physiology of biphasic insulin secretion. News Physiol Sci 15:72–77

    CAS  PubMed  Google Scholar 

  42. Santos RM, Rosario LM, Nadal A, Garcia-Sancho J, Soria B, Valdeolmillos M (1991) Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch 418(4):417–422

    Article  CAS  PubMed  Google Scholar 

  43. Schulze DU, Düfer M, Wieringa B, Krippeit-Drews P, Drews G (2007) An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells. Diabetologia 50(10):2126–2134. doi:10.1007/s00125-007-0742-9

    Article  CAS  PubMed  Google Scholar 

  44. Sener A, Rasschaert J, Malaisse WJ (1990) Hexose metabolism in pancreatic islets. Participation of Ca2(+)-sensitive 2-ketoglutarate dehydrogenase in the regulation of mitochondrial function. Biochim Biophys Acta 1019(1):42–50

    Article  CAS  PubMed  Google Scholar 

  45. Shuttleworth CW, Brennan AM, Connor JA (2003) NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J Neurosci 23(8):3196–3208

    CAS  PubMed  Google Scholar 

  46. Tarasov AI, Girard CA, Ashcroft FM (2006) ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic beta-cells. Diabetes 55(9):2446–2454. doi:10.2337/db06-0360

    Article  CAS  PubMed  Google Scholar 

  47. Tarasov AI, Semplici F, Li D, Rizzuto R, Ravier MA, Gilon P, Rutter GA (2013) Frequency-dependent mitochondrial Ca(2+) accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465(4):543–554. doi:10.1007/s00424-012-1177-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Thore S, Dyachok O, Tengholm A (2004) Oscillations of phospholipase C activity triggered by depolarization and Ca2+ influx in insulin-secreting cells. J Biol Chem 279(19):19396–19400. doi:10.1074/jbc.C400088200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grants of the Deutsche Forschungsgemeinschaft (G.D., M.D.) and the Deutsche Diabetes-Stiftung (G.D.). We thank Prof. J. Bryan for fruitful discussions about the manuscript.

Compliance with Ethical Standards

Informed consent

Not applicable

Research involving human participants and/or animals

Experiments were performed using organs from adult mice. The principles of laboratory animal care (Guide for the care and use of laboratory animals, NIH publication no. 85–23, revised 1985) and German laws were followed

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Krippeit-Drews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drews, G., Bauer, C., Edalat, A. et al. Evidence against a Ca2+-induced potentiation of dehydrogenase activity in pancreatic beta-cells. Pflugers Arch - Eur J Physiol 467, 2389–2397 (2015). https://doi.org/10.1007/s00424-015-1707-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1707-3

Keywords

Navigation