Skip to main content

Advertisement

Log in

Role of K2P channels in stimulus-secretion coupling

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Two-pore domain K+ (K2P) channels are involved in a variety of physiological processes by virtue of their high basal activity and sensitivity to various biological stimuli. One of these processes is secretion of hormones and transmitters in response to stimuli such as hypoxia, acidosis, and receptor agonists. The rise in intracellular [Ca2+] ([Ca2+]i) that is critical for the secretory event can be achieved by several mechanisms: (a) inhibition of resting (background) K+ channels, (b) activation of Na+/Ca2+-permeable channels, and (c) release of Ca2+ from intracellular stores. Here, we discuss the role of TASK and TREK in stimulus-secretion mechanisms in carotid body chemoreceptor cells and adrenal medullary/cortical cells. Studies show that stimuli such as hypoxia and acidosis cause cell depolarization and transmitter/hormone secretion by inhibition of TASK or TREK. Subsequent elevation of [Ca2+]i produced by opening of voltage-dependent Ca2+ channels then activates a Na+-permeable cation channel, presumably to help sustain the depolarization and [Ca2+]i. Agonists such as angiotensin II may elevate [Ca2+]i via multiple mechanisms involving both inhibition of TASK/TREK and Ca2+ release from internal stores to cause aldosterone secretion. Thus, inhibition of resting (background) K+ channels and subsequent activation of voltage-gated Ca2+ channels and Na+-permeable non-selective cation channels may be a common ionic mechanism that lead to hormone and transmitter secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abudara V, Eyzaguirre C (2008) Mechanical sensitivity of carotid body glomus cells. Respir Physiol Neurobiol 161(2):210–213

    Article  PubMed Central  PubMed  Google Scholar 

  2. Abudara V, Jiang RG, Eyzaguirre C (2002) Behavior of junction channels between rat glomus cells during normoxia and hypoxia. J Neurophysiol 88(2):639–649

    PubMed  Google Scholar 

  3. Bandulik S, Penton D, Barhanin J, Warth R (2010) TASK1 and TASK3 potassium channels: determinants of aldosterone secretion and adrenocortical zonation. Horm Metab Res 42(6):450–457

    Article  CAS  PubMed  Google Scholar 

  4. Bandulik S, Tauber P, Penton D, Schweda F, Tegtmeier I, Sterner C, Lalli E, Lesage F, Hartmann M, Barhanin J, Warth R (2013) Severe hyperaldosteronism in neonatal Task3 potassium channel knockout mice is associated with activation of the intraadrenal renin-angiotensin system. Endocrinology 154(8):2712–2722

    Article  CAS  PubMed  Google Scholar 

  5. Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29(11):566–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bin-Jaliah I, Maskell PD, Kumar P (2004) Indirect sensing of insulin-induced hypoglycaemia by the carotid body in the rat. J Physiol 556(Pt 1):255–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bournaud R, Hidalgo J, Yu H, Girard E, Shimahara T (2007) Catecholamine secretion from rat foetal adrenal chromaffin cells and hypoxia sensitivity. Pflugers Arch 454(1):83–92

    Article  CAS  PubMed  Google Scholar 

  8. Brown ST, Buttigieg J, Nurse CA (2010) Divergent roles of reactive oxygen species in the responses of perinatal adrenal chromaffin cells to hypoxic challenges. Respir Physiol Neurobiol 174(3):252–258

    Article  CAS  PubMed  Google Scholar 

  9. Buckler KJ (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol 498(Pt 3):649–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Buckler KJ (2007) TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 157(1):55–64

    Article  CAS  PubMed  Google Scholar 

  11. Buckler KJ, Turner PJ (2013) Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells. J Physiol 591(Pt 14):3549–3563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Buckler KJ, Williams BA, Honore E (2000) An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 525(Pt 1):135–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chen X, Talley EM, Patel N, Gomis A, McIntire WE, Dong B, Viana F, Garrison JC, Bayliss DA (2006) Inhibition of a background potassium channel by Gq protein alpha-subunits. Proc Natl Acad Sci U S A 103(9):3422–3427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Cotten JF, Keshavaprasad B, Laster MJ, Eger EI 2nd, Yost CS (2006) The ventilatory stimulant doxapram inhibits TASK tandem pore (K2P) potassium channel function but does not affect minimum alveolar anesthetic concentration. Anesth Analg 102(3):779–785

    Article  CAS  PubMed  Google Scholar 

  15. Czirjak G, Enyedi P (2002) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem 277(7):5426–5432

    Article  CAS  PubMed  Google Scholar 

  16. Czirjak G, Enyedi P (2002) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol Endocrinol 16(3):621–629

    Article  CAS  PubMed  Google Scholar 

  17. Czirjak G, Enyedi P (2010) TRESK background K (+) channel is inhibited by phosphorylation via two distinct pathways. J Biol Chem 285(19):14549–14557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Czirjak G, Fischer T, Spat A, Lesage F, Enyedi P (2000) TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol 14(6):863–874

    CAS  PubMed  Google Scholar 

  19. Dasso LL, Buckler KJ, Vaughan-Jones RD (1997) Muscarinic and nicotinic receptors raise intracellular Ca2+ levels in rat carotid body type I cells. J Physiol 498(Pt 2):327–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Duprat F, Girard C, Jarretou G, Lazdunski M (2005) Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J Physiol 562(Pt 1):235–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Enyeart JJ, Danthi SJ, Liu H, Enyeart JA (2005) Angiotensin II inhibits bTREK-1 K+ channels in adrenocortical cells by separate Ca2 + − and ATP hydrolysis-dependent mechanisms. J Biol Chem 280(35):30814–30828

    Article  CAS  PubMed  Google Scholar 

  22. Enyeart JJ, Liu H, Enyeart JA (2011) Calcium-dependent inhibition of adrenal TREK-1 channels by angiotensin II and ionomycin. Am J Physiol Cell Physiol 301(3):C619–C629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Enyeart JJ, Xu L, Danthi S, Enyeart JA (2002) An ACTH- and ATP-regulated background K+ channel in adrenocortical cells is TREK-1. J Biol Chem 277(51):49186–49199

    Article  CAS  PubMed  Google Scholar 

  24. Fagerlund MJ, Kahlin J, Ebberyd A, Schulte G, Mkrtchian S, Eriksson LI (2010) The human carotid body: expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology 113(6):1270–1279

    Article  PubMed  Google Scholar 

  25. Fearon IM, Zhang M, Vollmer C, Nurse CA (2003) GABA mediates autoreceptor feedback inhibition in the rat carotid body via presynaptic GABAB receptors and TASK-1. J Physiol 553(Pt 1):83–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Fitzgerald RS, Shirahata M, Chang I, Kostuk E (2009) The impact of hypoxia and low glucose on the release of acetylcholine and ATP from the incubated cat carotid body. Brain Res 1270:39–44

    Article  CAS  PubMed  Google Scholar 

  27. Fung ML, Lam SY, Chen Y, Dong X, Leung PS (2001) Functional expression of angiotensin II receptors in type-I cells of the rat carotid body. Pflugers Arch 441(4):474–480

    Article  CAS  PubMed  Google Scholar 

  28. Gallego-Martin T, Fernandez-Martinez S, Rigual R, Obeso A, Gonzalez C (2012) Effects of low glucose on carotid body chemoreceptor cell activity studied in cultures of intact organs and in dissociated cells. Am J Physiol Cell Physiol 302(8):C1128–C1140

    Article  CAS  PubMed  Google Scholar 

  29. Guagliardo NA, Yao J, Bayliss DA, Barrett PQ (2011) TASK channels are not required to mount an aldosterone secretory response to metabolic acidosis in mice. Mol Cell Endocrinol 336(1–2):47–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Han J, Truell J, Gnatenco C, Kim D (2002) Characterization of four types of background potassium channels in rat cerebellar granule neurons. J Physiol 542(Pt 2):431–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hwang EM, Kim E, Yarishkin O, Woo DH, Han KS, Park N, Bae Y, Woo J, Kim D, Park M, Lee CJ, Park JY (2014) A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat Commun 5:3227

    PubMed  Google Scholar 

  32. Kang D, Hogan JO, Kim D (2014) THIK-1 (K2P13.1) is a small-conductance background K (+) channel in rat trigeminal ganglion neurons. Pflugers Arch 466(7):1289–1300

    Article  CAS  PubMed  Google Scholar 

  33. Kang D, Wang J, Hogan JO, Vennekens R, Freichel M, White C, Kim D (2014) Increase in cytosolic Ca2+ produced by hypoxia and other depolarizing stimuli activates a non-selective cation channel in chemoreceptor cells of rat carotid body. J Physiol 592(Pt 9):1975–1992

    Article  CAS  PubMed  Google Scholar 

  34. Kim D (2003) Fatty acid-sensitive two-pore domain K (+) channels. Trends Pharmacol Sci 24(12):648–654

    Article  CAS  PubMed  Google Scholar 

  35. Kim D, Cavanaugh EJ, Kim I, Carroll JL (2009) Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. J Physiol 587(Pt 12):2963–2975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kim D, Gnatenco C (2001) TASK-5, a new member of the tandem-pore K (+) channel family. Biochem Biophys Res Commun 284(4):923–930

    Article  CAS  PubMed  Google Scholar 

  37. Kim D, Kim I, Papreck JR, Donnelly DF, Carroll JL (2011) Characterization of an ATP-sensitive K(+) channel in rat carotid body glomus cells. Respir Physiol Neurobiol 177(3):247–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kim D, Papreck JR, Kim I, Donnelly DF, Carroll JL (2011) Changes in oxygen sensitivity of TASK in carotid body glomus cells during early postnatal development. Respir Physiol Neurobiol 177(3):228–235

    Article  PubMed Central  PubMed  Google Scholar 

  39. Koyama Y, Coker RH, Stone EE, Lacy DB, Jabbour K, Williams PE, Wasserman DH (2000) Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes 49(9):1434–1442

    Article  CAS  PubMed  Google Scholar 

  40. Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londono JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M (2010) Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest 120(9):3267–3279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578(Pt 2):377–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mkrtchian S, Kahlin J, Ebberyd A, Gonzalez C, Sanchez D, Balbir A, Kostuk EW, Shirahata M, Fagerlund MJ, Eriksson LI (2012) The human carotid body transcriptome with focus on oxygen sensing and inflammation—a comparative analysis. J Physiol 590(Pt 16):3807–3819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mulkey DK, Talley EM, Stornetta RL, Siegel AR, West GH, Chen X, Sen N, Mistry AM, Guyenet PG, Bayliss DA (2007) TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J Neurosci 27(51):14049–14058

    Article  CAS  PubMed  Google Scholar 

  44. Murali S, Zhang M, Nurse CA (2014) Angiotensin II mobilizes intracellular calcium and activates pannexin-1 channels in rat carotid body type II cells via AT1 receptors. J Physiol 592(Pt 21):4747–4762

    Article  CAS  PubMed  Google Scholar 

  45. Musset B, Meuth SG, Liu GX, Derst C, Wegner S, Pape HC, Budde T, Preisig-Muller R, Daut J (2006) Effects of divalent cations and spermine on the K+ channel TASK-3 and on the outward current in thalamic neurons. J Physiol 572(Pt 3):639–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Nurse CA (2014) Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors. J Physiol 592(Pt 16):3419–3426

    Article  CAS  PubMed  Google Scholar 

  47. Ortega-Saenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, Lopez-Barneo J (2010) Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135(4):379–392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pardal R, Lopez-Barneo J (2002) Low glucose-sensing cells in the carotid body. Nat Neurosci 5(3):197–198

    Article  CAS  PubMed  Google Scholar 

  49. Pardal R, Ludewig U, Garcia-Hirschfeld J, Lopez-Barneo J (2000) Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Proc Natl Acad Sci U S A 97(5):2361–2366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Peers C, Wyatt CN (2007) The role of maxiK channels in carotid body chemotransduction. Respir Physiol Neurobiol 157(1):75–82

    Article  CAS  PubMed  Google Scholar 

  51. Renigunta V, Fischer T, Zuzarte M, Kling S, Zou X, Siebert K, Limberg MM, Rinne S, Decher N, Schlichthorl G, Daut J (2014) Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1. Mol Biol Cell 25(12):1877–1891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Riesco-Fagundo AM, Perez-Garcia MT, Gonzalez C, Lopez-Lopez JR (2001) O(2) modulates large-conductance Ca(2+)-dependent K(+) channels of rat chemoreceptor cells by a membrane-restricted and CO-sensitive mechanism. Circ Res 89(5):430–436

    Article  CAS  PubMed  Google Scholar 

  53. Sandoz G, Douguet D, Chatelain F, Lazdunski M, Lesage F (2009) Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc Natl Acad Sci U S A 106(34):14628–14633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Schiekel J, Lindner M, Hetzel A, Wemhoner K, Renigunta V, Schlichthorl G, Decher N, Oliver D, Daut J (2013) The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C. Cardiovasc Res 97(1):97–105

    Article  CAS  PubMed  Google Scholar 

  55. Schwingshackl A, Teng B, Ghosh M, West AN, Makena P, Gorantla V, Sinclair SE, Waters CM (2012) Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 302(1):L93–L102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Sterni LM, Bamford OS, Tomares SM, Montrose MH, Carroll JL (1995) Developmental changes in intracellular Ca2+ response of carotid chemoreceptor cells to hypoxia. Am J Physiol 268(5 Pt 1):L801–L808

    CAS  PubMed  Google Scholar 

  57. Thompson RJ, Farragher SM, Cutz E, Nurse CA (2002) Developmental regulation of O(2) sensing in neonatal adrenal chromaffin cells from wild-type and NADPH-oxidase-deficient mice. Pflugers Arch 444(4):539–548

    Article  CAS  PubMed  Google Scholar 

  58. Trapp S, Aller MI, Wisden W, Gourine AV (2008) A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci 28(35):8844–8850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Tse A, Yan L, Lee AK, Tse FW (2012) Autocrine and paracrine actions of ATP in rat carotid body. Can J Physiol Pharmacol 90(6):705–711

    Article  CAS  PubMed  Google Scholar 

  60. Turner PJ, Buckler KJ (2013) Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells. J Physiol 591(Pt 23):5977–5998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Veale EL, Kennard LE, Sutton GL, MacKenzie G, Sandu C, Mathie A (2007) G(alpha)q-mediated regulation of TASK3 two-pore domain potassium channels: the role of protein kinase C. Mol Pharmacol 71(6):1666–1675

    Article  CAS  PubMed  Google Scholar 

  62. Williams BA, Buckler KJ (2004) Biophysical properties and metabolic regulation of a TASK-like potassium channel in rat carotid body type 1 cells. Am J Physiol Lung Cell Mol Physiol 286(1):L221–L230

    Article  CAS  PubMed  Google Scholar 

  63. Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC, Park JY, Lee CJ (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151(1):25–40

    Article  CAS  PubMed  Google Scholar 

  64. Xu F, Xu J, Tse FW, Tse A (2006) Adenosine stimulates depolarization and rise in cytoplasmic [Ca2+] in type I cells of rat carotid bodies. Am J Physiol Cell Physiol 290(6):C1592–C1598

    Article  CAS  PubMed  Google Scholar 

  65. Zhang M, Buttigieg J, Nurse CA (2007) Neurotransmitter mechanisms mediating low-glucose signalling in cocultures and fresh tissue slices of rat carotid body. J Physiol 578(Pt 3):735–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525(Pt 1):143–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Zuzarte M, Heusser K, Renigunta V, Schlichthorl G, Rinne S, Wischmeyer E, Daut J, Schwappach B, Preisig-Muller R (2009) Intracellular traffic of the K+ channels TASK-1 and TASK-3: role of N- and C-terminal sorting signals and interaction with 14-3-3 proteins. J Physiol 587(Pt 5):929–952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was made possible by a grant from NIH (HL-111497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghee Kim.

Additional information

“This article is published as part of the Special Issue on [K2P channels].”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Kang, D. Role of K2P channels in stimulus-secretion coupling. Pflugers Arch - Eur J Physiol 467, 1001–1011 (2015). https://doi.org/10.1007/s00424-014-1663-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1663-3

Keywords

Navigation