Skip to main content

Advertisement

Log in

Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing the h-angiotensinogen and h-renin genes (AR) subjected to either a control, or a high-salt diet plus a treatment with a NO-synthase inhibitor, N-ω-nitro-l-arginine-methyl-ester (l-NAME; BLSL and ARSL). BLSL showed a moderate increase in blood pressure, while ARSL became severely hypertensive. Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not affected in BLSL and AR. However, in ARSL, endothelium-dependent relaxations (acetylcholine, UK-14304) were significantly reduced, and this dysfunction was similar in aortae without or with aneurysms. The endothelial impairment was unaffected by catalase, superoxide-dismutase mimetic, radical scavengers, cyclooxygenase inhibition, or TP-receptor blockade and could not be attributed to sGC oxidation. Thus, ARSL is a severe hypertension model developing aortic aneurysm. A vascular dysfunction, involving both endothelial (reduced role of NO) and smooth muscle cells, precedes aneurysms formation and, paradoxically, does not appear to involve oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Badejo AM Jr, Nossaman VE, Pankey EA, Bhartiya M, Kannadka CB, Murthy SN, Nossaman BD, Kadowitz PJ (2010) Pulmonary and systemic vasodilator responses to the soluble guanylyl cyclase stimulator, BAY 41-8543, are modulated by nitric oxide. Am J Physiol Heart Circ Physiol 299:H1153–H1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Blomkalns AL, Gavrila D, Thomas M, Neltner BS, Blanco VM, Benjamin SB, McCormick ML, Stoll LL, Denning GM, Collins SP, Qin Z, Daugherty A, Cassis LA, Thompson RW, Weiss RM, Lindower PD, Pinney SM, Chatterjee T, Weintraub NL (2013) CD14 directs adventitial macrophage precursor recruitment: role in early abdominal aortic aneurysm formation. J Am Heart Assoc 2(2):e000065

    Article  PubMed Central  PubMed  Google Scholar 

  3. Brandes RP, Schmitz-Winnenthal FH, Félétou M, Gödecke A, Huang PL, Vanhoutte PM, Fleming I, Busse R (2000) An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice. Proc Natl Acad Sci U S A 97:9747–9752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Capettini LS, Cortes SF, Gomes MA, Silva GA, Pesquero JL, Lopes MJ, Teixeira MM, Lemos VS (2008) Neuronal nitric oxide synthase-derived hydrogen peroxide is a major endothelium-dependent relaxing factor. Am J Physiol Heart Circ Physiol 295:H2503–H2511

    Article  CAS  PubMed  Google Scholar 

  5. Capettini LS, Cortes SF, Silva JF, Alvarez-Leite JI, Lemos VS (2011) Decreased production of neuronal NOS-derived hydrogen peroxide contributes to endothelial dysfunction in atherosclerosis. Br J Pharmacol 164:1738–1748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Carsten CG 3rd, Calton WC, Johanning JM, Armstrong PJ, Franklin DP, Carey DJ, Elmore JR (2001) Elastase is not sufficient to induce experimental abdominal aortic aneurysms. J Vasc Surg 33:1255–1262

    Article  PubMed  Google Scholar 

  7. Cassis LA, Gupte M, Thayer S, Zhang X, Charnigo R, Howatt DA, Rateri DL, Daugherty A (2009) ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. Am J Physiol Heart Circ Physiol 296:H1660–H1665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chung AW, Au Yeung K, Cortes SF, Sandor GG, Judge DP, Dietz HC, van Breemen C (2007) Endothelial dysfunction and compromised eNOS/Akt signaling in the thoracic aorta during the progression of Marfan syndrome. Br J Pharmacol 150:1075–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chung AW, Yang HH, Radomski MW, van Breemen C (2008) Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ Res 102:e73–e85

    Article  CAS  PubMed  Google Scholar 

  10. Chung AW, Yang HH, van Breemen C (2007) Imbalanced synthesis of cyclooxygenase-derived thromboxane A2 and prostacyclin compromises vasomotor function of the thoracic aorta in Marfan syndrome. Br J Pharmacol 152:305–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cosentino F, Barker JE, Brand MP, Heales SJ, Werner ER, Tippins JR, West N, Channon KM, Volpe M, Lüscher TF (2001) Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 21:496–502

    Article  CAS  PubMed  Google Scholar 

  12. Daugherty A, Cassis LA (2004) Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 24:429–434

    Article  CAS  PubMed  Google Scholar 

  13. Daugherty A, Manning MW, Cassis LA (2001) Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol 134:865–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Didion SP, Ryan MJ, Baumbach GL, Sigmund CD, Faraci FM (2002) Superoxide contributes to vascular dysfunction in mice that express human renin and angiotensinogen. Am J Physiol Heart Circ Physiol 283:H1569–H1576

    Article  CAS  PubMed  Google Scholar 

  15. Didion SP, Sigmund CD, Faraci FM (2000) Impaired endothelial function in transgenic mice expressing both human renin and human angiotensinogen. Stroke 31:760–764

    Article  CAS  PubMed  Google Scholar 

  16. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassègue B, Griendling KK, Harrison DG, Dikalova AE (2014) Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal 20:281–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Douglas G, Bendall JK, Crabtree MJ, Tatham AL, Carter EE, Hale AB, Channon KM (2012) Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE/ mice. Cardiovasc Res 94:20–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Durik M, Kavousi M, van der Pluijm I, Isaacs A, Cheng C, Verdonk K, Loot AE, Oeseburg H, Bhaggoe UM, Leijten F, van Veghel R, de Vries R, Rudez G, Brandt R, Ridwan YR, van Deel ED, de Boer M, Tempel D, Fleming I, Mitchell GF, Verwoert GC, Tarasov KV, Uitterlinden AG, Hofman A, Duckers HJ, van Duijn CM, Oostra BA, Witteman JC, Duncker DJ, Danser AH, Hoeijmakers JH, Roks AJ (2012) Nucleotide excision DNA repair is associated with age-related vascular dysfunction. Circulation 126:468–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ellis A, Pannirselvam M, Anderson TJ, Triggle CR (2003) Catalase has negligible inhibitory effects on endothelium-dependent relaxations in mouse isolated aorta and small mesenteric artery. Br J Pharmacol 140:1193–1200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HH, Stasch JP (2006) NO-independent stimulators and activators of soluble guanylyl cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5:755–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fan LM, Douglas G, Bendall JK, McNeill E, Crabtree MJ, Hale AB, Mai A, Li JM, McAteer MA, Schneider JE, Choudhury RP, Channon KM (2014) Endothelial cell-specific reactive oxygen species production increases susceptibility to aortic dissection. Circulation 129:2661–2672

    Article  CAS  PubMed  Google Scholar 

  22. Félétou M, Teisseire B (1990) Converting enzyme inhibition in isolated porcine resistance artery potentiates bradykinin relaxation. Eur J Pharmacol 190:159–166

    Article  PubMed  Google Scholar 

  23. Félétou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder. Am J Physiol Heart Circ Physiol 291:H985–H1002

    Article  PubMed  Google Scholar 

  24. Félétou M, Vanhoutte PM (2006) EDHF, the complete story. Taylor & Francis CRC Press, Boca Raton

    Google Scholar 

  25. Félétou M, Vanhoutte PM, Verbeuren TJ (2010) The thromboxane/endoperoxide receptor (TP): the common villain. J Cardiovasc Pharmacol 55:317–332

    Article  PubMed  Google Scholar 

  26. Francois H, Makhanova N, Ruiz P, Ellison J, Mao L, Rockman HA, Coffman TM (2008) A role for the thromboxane receptor in l-NAME hypertension. Am J Physiol Renal Physiol 295:F1096–F1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Fukamizu A, Sugimura K, Takimoto E, Sugiyama F, Seo MS, Takahashi S, Hatae T, Kajiwara N, Yagami K, Murakami K (1993) Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J Biol Chem 268:11617–11621

    CAS  PubMed  Google Scholar 

  28. Gao L, Siu KL, Chalupsky K, Nguyen A, Chen P, Weintraub NL, Galis Z, Cai H (2012) Role of uncoupled endothelial nitric oxide synthase in abdominal aortic aneurysm formation: treatment with folic acid. Hypertension 59:158–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B (1995) Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 48:184–188

    CAS  PubMed  Google Scholar 

  30. Gavrila D, Li WG, McCormick ML, Thomas M, Daugherty A, Cassis LA, Miller FJ Jr, Oberley LW, Dellsperger KC, Weintraub NL (2005) Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25:1671–1677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwała M, Bujak-Gizycka B, Filip G, Grudzien G, Kapelak B, Zmudka K, Mrowiecki T, Sadowski J, Korbut R, Guzik TJ (2013) Mechanisms of oxidative stress in human aortic aneurysms—association with clinical risk factors for atherosclerosis and disease severity. Int J Cardiol 168:2389–2396

    Article  PubMed Central  PubMed  Google Scholar 

  32. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hasenau AL, Nielsen G, Morisseau C, Hammock BD, Wulff H, Köhler R (2011) Improvement of endothelium-dependent vasodilations by SKA-31 and SKA-20, activators of small- and intermediate-conductance Ca2+-activated K+-channels. Acta Physiol (Oxf) 203:117–126

    Article  CAS  Google Scholar 

  34. Hashimoto T, Ichiki T, Watanabe A, Hurt-Camejo E, Michaëlsson E, Ikeda J, Inoue E, Matsuura H, Tokunou T, Kitamoto S, Sunagawa K (2014) Stimulation of α7 nicotinic acetylcholine receptor by AR-R17779 suppresses atherosclerosis and aortic aneurysm formation in apolipoprotein E-deficient mice. Vascul Pharmacol 61:49–55

    Article  CAS  PubMed  Google Scholar 

  35. Hofmann Bowman M, Wilk J, Heydemann A, Kim G, Rehman J, Lodato JA, Raman J, McNally EM (2010) S100A12 mediates aortic wall remodeling and aortic aneurysm. Circ Res 106:145–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Huang J, Yamashiro Y, Papke CL, Ikeda Y, Lin Y, Patel M, Inagami T, Le VP, Wagenseil JE, Yanagisawa H (2003) Angiotensin-converting enzyme-induced activation of local angiotensin signaling is required for ascending aortic aneurysms in fibulin-4-deficient mice. Sci Transl Med 5:183ra58

    Google Scholar 

  37. Iida S, Baumbach GL, Lavoie JL, Faraci FM, Sigmund CD, Heistad DD (2005) Spontaneous stroke in a genetic model of hypertension in mice. Stroke 36:1253–1258

    Article  PubMed  Google Scholar 

  38. Inaba T, Gotoda T, Harada K, Shimada M, Ohsuga J, Ishibashi S, Yazaki Y, Yamada N (1995) Induction of sustained expression of proto-oncogene c-fms by platelet-derived growth factor, epidermal growth factor, and basic fibroblast growth factor, and its suppression by interferon-gamma and macrophage colony-stimulating factor in human aortic medial smooth muscle cells. J Clin Invest 95:1133–1139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jackson WF, Busse R (1991) Elevated guanosine 3′:5′-cyclic monophosphate mediates the depression of nitrovasodilator reactivity in endothelium-intact blood vessels. Naunyn Schmiedeberg’s Arch Pharmacol 344:345–350

    Article  CAS  Google Scholar 

  40. Kent KC, Zwolak RM, Egorova NN, Riles TS, Manganaro A, Moskowitz AJ, Gelijns AC, Greco G (2010) Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg 52:539–548

    Article  PubMed  Google Scholar 

  41. Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, Picard MH, Huang PL (2001) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104:448–454

    Article  CAS  PubMed  Google Scholar 

  42. Majesky MW, Dong XR, Hoglund VJ (2011) Parsing aortic aneurysms: more surprises. Circ Res 108:528–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Manning MW, Cassi LA, Huang J, Szilvassy SJ, Daugherty A (2002) Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vasc Med 7:45–54

    Article  PubMed  Google Scholar 

  44. Martin F, Baskaran P, Ma X, Dunten PW, Schaefer M, Stasch JP, Beuve A, van den Akker F (2010) Structure of cinaciguat (BAY 58-2667) bound to nostoc H-NOX domain reveals insights into heme-mimetic activation of the soluble guanylyl cyclase. J Biol Chem 1285:22651–22657

    Article  Google Scholar 

  45. McCormick ML, Gavrila D, Weintraub NL (2007) Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 27:461–469

    Article  CAS  PubMed  Google Scholar 

  46. Merrill DC, Thompson MW, Carney CL, Granwehr BP, Schlager G, Robillard JE, Sigmund CD (1996) Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes. J Clin Invest 97:1047–1055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Nishijo N, Sugiyama F, Kimoto K, Taniguchi K, Murakami K, Suzuki S, Fukamizu A, Yagami K (1998) Salt-sensitive aortic aneurysm and rupture in hypertensive transgenic mice that overproduce angiotensin II. Lab Invest 78:1059–1066

    CAS  PubMed  Google Scholar 

  48. Nishijo N, Takamine S, Sugiyama F, Kimoto K, Taniguchi K, Horiguchi H, Ogata T, Murakami K, Fukamizu A, Yagami K (1999) Vascular remodeling in hypertensive transgenic mice. Exp Anim 48:203–208

    Article  CAS  PubMed  Google Scholar 

  49. Pankey EA, Bhartiya M, Badejo AM Jr, Haider U, Stasch JP, Murthy SN, Nossaman BD, Kadowitz PJ (2011) Pulmonary and systemic vasodilator responses to the soluble guanylyl cyclase activator, BAY 60-2770, are not dependent on endogenous nitric oxide or reduced heme. Am J Physiol Heart Circ Physiol 300:H792–H802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Priviero FB, Zemse SM, Teixeira CE, Webb RC (2009) Oxidative stress impairs vasorelaxation induced by the soluble guanylyl cyclase activator BAY 41-2272 in spontaneously hypertensive rats. Am J Hypertens 22:493–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rabelo LA, Cortes SF, Alvarez-Leite JI, Lemos VS (2003) Endothelium dysfunction in LDL receptor knockout mice: a role for H2O2. Br J Pharmacol 138:1215–1220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Radtke J, Schmidt K, Wulff H, Köhler R, de Wit C (2013) Activation of KCa3.1 by SKA-31 induces arteriolar dilatation and lowers blood pressure in normo- and hypertensive connexin40-deficient mice. Br J Pharmacol 170:293–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, Alom-Ruiz S, Anilkumar N, Ouattara A, Cave AC, Walker SJ, Grieve DJ, Charles RL, Eaton P, Brewer AC, Shah AM (2011) Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol 31:1368–1376

    Article  CAS  PubMed  Google Scholar 

  54. Rochelle LG, Morana SJ, Kruszyna H, Russell MA, Wilcox DE, Smith RP (1995) Interactions between hydroxocobalamin and nitric oxide (NO): evidence for a redox reaction between NO and reduced cobalamin and reversible NO binding to oxidized cobalamin. J Pharmacol Exp Ther 275:48–52

    CAS  PubMed  Google Scholar 

  55. Roger S, Badier-Commander C, Paysant J, Cordi A, Verbeuren TJ, Félétou M (2010) The anti-aggregating effect of BAY 41-2272, a stimulator of soluble guanylyl cyclase, requires the presence of nitric oxide. Br J Pharmacol 161:1044–1058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Roger S, Paysant J, Badier-Commander C, Cordi A, Verbeuren TJ, Félétou M (2010) Anti-aggregating effect of BAY 58-2667, an activator of soluble guanylyl cyclase. Vascul Pharmacol 53:281–287

    Article  CAS  PubMed  Google Scholar 

  57. Roy B, Halvey EJ, Garthwaite J (2008) An enzyme-linked receptor mechanism for nitric oxide-activated guanylyl cyclase. J Biol Chem 283:18841–18851

    Article  CAS  PubMed  Google Scholar 

  58. Roy B, Mo E, Vernon J, Garthwaite J (2008) Probing the presence of the ligand-binding haem in cellular nitric oxide receptors. Br J Pharmacol 153:1495–1504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ryan MJ, Didion SP, Davis DR, Faraci FM, Sigmund CD (2002) Endothelial dysfunction and blood pressure variability in selected inbred mouse strains. Arterioscler Thromb Vasc Biol 22:42–48

    Article  CAS  PubMed  Google Scholar 

  60. Safar ME, London GM, Asmar R, Frohlich ED (1998) Recent advances on large arteries in hypertension. Hypertension 32:156–161

    Article  CAS  PubMed  Google Scholar 

  61. Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI, Hoyer J, Köhler R, Wulff H (2009) Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol 75:281–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Schiffrin EL (2004) Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens 17:1192–1200

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt HH, Schmidt PM, Stasch JP (2009) NO- and haem-independent soluble guanylate cyclase activators. Handb Exp Pharmacol 191:309–339

    Article  CAS  PubMed  Google Scholar 

  64. Schmidt P, Schramm M, Schröder H, Stasch JP (2003) Mechanisms of nitric oxide independent activation of soluble guanylyl cyclase. Eur J Pharmacol 468:167–174

    Article  CAS  PubMed  Google Scholar 

  65. Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N, Dimmeler S, Shah AM, Brandes RP (2012) Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110:1217–1225

    Article  PubMed  Google Scholar 

  66. Sethi S, Iida S, Sigmund CD, Heistad DD (2006) Renal thrombotic microangiopathy in a genetic model of hypertension in mice. Exp Biol Med (Maywood) 231:196–203

    CAS  Google Scholar 

  67. Seto SW, Krishna SM, Yu H, Liu D, Khosla S, Golledge J (2013) Impaired acetylcholine-induced endothelium-dependent aortic relaxation by caveolin-1 in angiotensin II-infused apolipoprotein-E (ApoE−/−) knockout mice. PLoS One 8(3):e58481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Shafaroudi MM, McBride M, Deighan C, Wokoma A, Macmillan J, Daly CJ, McGrath JC (2005) Two “knockout” mouse models demonstrate that aortic vasodilatation is mediated via alpha2a-adrenoceptors located on the endothelium. J Pharmacol Exp Ther 314:804–810

    Article  CAS  PubMed  Google Scholar 

  69. Shimokawa H (2010) Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pflugers Arch 459:915–922

    Article  CAS  PubMed  Google Scholar 

  70. Simonet S, Descombes JJ, Vallez MO, Dubuffet T, Lavielle G, Verbeuren TJ (1997) S 18886, a new thromboxane (TP)-receptor antagonist is the active isomer of S 18204 in all species, except in the guinea-pig. Adv Exp Med Biol 433:173–176

    Article  CAS  PubMed  Google Scholar 

  71. Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Gerzer R, Minuth T, Perzborn E, Pleiss U, Schröder H, Schroeder W, Stahl E, Steinke W, Straub A, Schramm M (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410:212–215

    Article  CAS  PubMed  Google Scholar 

  72. Stasch JP, Hobbs AJ (2009) NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb Exp Pharmacol 191:277–308

    Article  CAS  PubMed  Google Scholar 

  73. Stasch JP, Schmidt P, Alonso-Alija C, Apeler H, Dembowsky K, Haerter M, Heil M, Minuth T, Perzborn E, Pleiss U, Schramm M, Schroeder W, Schröder H, Stahl E, Steinke W, Wunder F (2002) NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br J Pharmacol 136:773–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, Arun Kumar HS, Meurer S, Deile M, Taye A, Knorr A, Lapp H, Müller H, Turgay Y, Rothkegel C, Tersteegen A, Kemp-Harper B, Müller-Esterl W, Schmidt HH (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116:2552–2561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Sutliff RL, Hilenski LL, Amanso AM, Parastatidis I, Dikalova AE, Hansen L, Datla SR, Long JS, El-Ali AM, Joseph G, Gleason RL Jr, Taylor WR, Hart CM, Griendling KK, Lassègue B (2013) Polymerase delta interacting protein 2 sustains vascular structure and function. Arterioscler Thromb Vasc Biol 33:2154–2161

    Article  CAS  PubMed  Google Scholar 

  76. Syyong HT, Chung AW, Yang HH, van Breemen C (2009) Dysfunction of endothelial and smooth muscle cells in small arteries of a mouse model of Marfan syndrome. Br J Pharmacol 158:1597–1608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Tang EH, Ku DD, Tipoe GL, Feletou M, Man RY, Vanhoutte PM (2005) Endothelium-dependent contractions occur in the aorta of wild-type and COX2 −/− knockout but not COX1 −/− knockout mice. J Cardiovasc Pharmacol 46:761–765

    Article  CAS  PubMed  Google Scholar 

  78. Thomas M, Gavrila D, McCormick ML, Miller FJ Jr, Daugherty A, Cassis LA, Dellsperger KC, Weintraub NL (2006) Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation 114:404–413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Varo N, Iraburu MJ, Varela M, López B, Etayo JC, Díez J (2000) Chronic AT(1) blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension 35:1197–1202

    Article  CAS  PubMed  Google Scholar 

  80. Verbeuren TJ, Jordaens FH, Zonnekeyn LL, Van Hove CE, Coene MC, Herman AG (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res 58:552–564

    Article  CAS  PubMed  Google Scholar 

  81. Waeckel L, Bertin F, Clavreul N, Damery T, Köhler R, Paysant J, Sansilvestri-Morel P, Simonet S, Vayssettes-Courchay C, Wulff H, Verbeuren TJ, Félétou M (2014) Preserved regulation of renal perfusion pressure by small and intermediate conductance KCa channels in hypertensive mice with or without renal failure. Pflugers Arch [Epub ahead of print]

  82. Weinberg JB, Chen Y, Jiang N, Beasley BE, Salerno JC, Ghosh DK (2009) Inhibition of nitric oxide synthase by cobalamins and cobinamides. Free Radic Biol Med 46:1626–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Xie Y, Chen C, Hume DA (2001) Transcriptional regulation of c-fms gene expression. Cell Biochem Biophys 34:1–16

    Article  CAS  PubMed  Google Scholar 

  84. Yang HH, Kim JM, Chum E, van Breemen C, Chung AW (2009) Long-term effects of losartan on structure and function of the thoracic aorta in a mouse model of Marfan syndrome. Br J Pharmacol 158:1503–1512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Yang HH, van Breemen C, Chung AW (2010) Vasomotor dysfunction in the thoracic aorta of Marfan syndrome is associated with accumulation of oxidative stress. Vascul Pharmacol 52:37–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Catherine de Montrion, Monique Naze, and Jean-François Boivin for biochemical and histological analysis.

Conflict of interest

Ludovic Waeckel, Cécile Badier-Commander, Patricia Sansilvestri-Morel, Serge Simonet, Christine Vayssettes-Courchay, and Michel Félétou are, or were, employees of the Institut de Recherches Servier, a research institution belonging to the Groupe de Recherches Servier, a Pharmaceutical Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Félétou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43 kb)

ESM 2

(PPTX 2761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waeckel, L., Badier-Commander, C., Damery, T. et al. Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm. Pflugers Arch - Eur J Physiol 467, 1945–1963 (2015). https://doi.org/10.1007/s00424-014-1644-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1644-6

Keywords

Navigation