Skip to main content

Advertisement

Log in

Compromised maturation of GABAergic inhibition underlies abnormal network activity in the hippocampus of epileptic Ca2+ channel mutant mice, tottering

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cholinergically induced network activity is a useful analogue of theta rhythms involved in memory processing or epileptiform activity in the hippocampus, providing a powerful tool to elucidate the mechanisms of synchrony in neuronal networks. In absence epilepsy, although its association with cognitive impairments has been reported, the mechanisms underlying hippocampal synchrony remain poorly investigated. Here we simultaneously recorded electrical activities from 64 sites in hippocampal slices of CaV2.1 Ca2+ channel mutant tottering (tg) mice, a well-established mouse model of spontaneous absence epilepsy, to analyze the spatiotemporal pattern of cholinergically induced hippocampal network activity. The cholinergic agonist carbachol induced oscillatory discharges originating from the CA3 region. In tg/tg mice, this hippocampal network activity was characterized by enhanced occupancy of discharges of relatively high frequency (6–10 Hz) compared to the wild type. Pharmacological analyses of slices, patch clamp electrophysiological characterization of isolated neurons, and altered patterns of hippocampal GABAA receptor subunit and Cl transporter messenger RNA (mRNA) transcript levels revealed that this abnormality is attributable to a developmental retardation of GABAergic inhibition caused by immature intracellular Cl regulation. These results suggest that the inherited CaV2.1 Ca2+ channel mutation leads to developmental abnormalities in Cl transporter expression and GABAA receptor compositions in hippocampal neurons and that compromised maturation of GABAergic inhibition contributes to the abnormal synchrony in the hippocampus of tg absence epileptic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aldenkamp A, Arends J (2004) The relative influence of epileptic EEG discharges, short nonconvulsive seizures, and type of epilepsy on cognitive function. Epilepsia 45:54–63

    Article  PubMed  Google Scholar 

  2. Angelotti TP, Uhler MD, Macdonald RL (1993) Assembly of GABAA receptor subunits: analysis of transient single-cell expression utilizing a fluorescent substrate/marker gene technique. J Neurosci 13:1418–1428

    CAS  PubMed  Google Scholar 

  3. Austin JK (2009) The 2007 Judith Hoyer lecture. Epilepsy comorbidities: Lennox and lessons learned. Epilepsy Behav 14:3–7

    Article  PubMed  Google Scholar 

  4. Ayata C, Shimizu-Sasamata M, Lo EH, Noebels JL, Moskowitz MA (2000) Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the α1A subunit of P/Q type calcium channels. Neuroscience 95:639–645

    Article  CAS  PubMed  Google Scholar 

  5. Ballard TM, Knoflach F, Prinssen E, Borroni E, Vivian JA, Basile J, Gasser R, Moreau JL, Wettstein JG, Buettelmann B, Knust H, Thomas AW, Trube G, Hernandez MC (2009) RO4938581, a novel cognitive enhancer acting at GABAA α5 subunit-containing receptors. Psychopharmacology (Berl) 202:207–223

    Article  CAS  Google Scholar 

  6. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  CAS  PubMed  Google Scholar 

  7. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838

    Article  CAS  PubMed  Google Scholar 

  8. Buzsáki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570

    Article  PubMed  Google Scholar 

  9. Buzsáki G (1998) Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 7(Suppl 1):17–23

    Article  PubMed  Google Scholar 

  10. Buzsáki G, Horváth Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027

    Article  PubMed  Google Scholar 

  11. Buzsáki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171

    Article  PubMed  Google Scholar 

  12. Caddick SJ, Wang C, Fletcher CF, Jenkins NA, Copeland NG, Hosford DA (1999) Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4 lh) and tottering (Cacna1a tg) mouse thalami. J Neurophysiol 81:2066–2074

    CAS  PubMed  Google Scholar 

  13. Caplan R, Siddarth P, Stahl L, Lanphier E, Vona P, Gurbani S, Koh S, Sankar R, Shields WD (2008) Childhood absence epilepsy: behavioral, cognitive, and linguistic comorbidities. Epilepsia 49:1838–1846

    Article  PubMed  Google Scholar 

  14. Cornaggia CM, Beghi M, Provenzi M, Beghi E (2006) Correlation between cognition and behavior in epilepsy. Epilepsia 47(Suppl 2):34–39

    Article  PubMed  Google Scholar 

  15. Dzhala VI, Staley KJ (2003) Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus. J Neurosci 23:1840–1846

    CAS  PubMed  Google Scholar 

  16. Ebihara S, Shirato K, Harata N, Akaike N (1995) Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride. J Physiol 484:77–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120

    Article  CAS  PubMed  Google Scholar 

  18. Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617

    Article  CAS  PubMed  Google Scholar 

  19. Gambarana C, Beattie CE, Rodríguez ZR, Siegel RE (1991) Region-specific expression of messenger RNAs encoding GABAA receptor subunits in the developing rat brain. Neuroscience 45:423–432

    Article  CAS  PubMed  Google Scholar 

  20. Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532

    Article  CAS  PubMed  Google Scholar 

  21. Halász P, Kelemen A, Clemens B, Saracz J, Rosdy B, Rásonyi G, Szücs A (2005) The perisylvian epileptic network. A unifying concept. Ideggyogy Sz 58:21–31

    PubMed  Google Scholar 

  22. Helekar SA, Noebels JL (1994) Analysis of voltage-gated and synaptic conductances contributing to network excitability defects in the mutant mouse tottering. J Neurophysiol 71:1–10

    CAS  PubMed  Google Scholar 

  23. Johnston D, Brown TH (1984) The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons. Ann Neurol 16(Suppl):S65–S71

    Article  PubMed  Google Scholar 

  24. Jouvenceau A, Eunson LH, Spauschus A, Ramesh V, Zuberi SM, Kullmann DM, Hanna MG (2001) Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 358:801–807

    Article  CAS  PubMed  Google Scholar 

  25. Kaja S, Hann V, Payne HL, Thompson CL (2007) Aberrant cerebellar granule cell-specific GABAA receptor expression in the epileptic and ataxic mouse mutant, Tottering. Neuroscience 148:115–125

    Article  CAS  PubMed  Google Scholar 

  26. Khan OI, Zhao Q, Miller F, Holmes GL (2010) Interictal spikes in developing rats cause long-standing cognitive deficits. Neurobiol Dis 39:362–371

    Article  PubMed Central  PubMed  Google Scholar 

  27. Khazipov R, Khalilov I, Tyzio R, Morozova E, Ben-Ari Y, Holmes GL (2004) Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur J Neurosci 19:590–600

    Article  PubMed  Google Scholar 

  28. Kleen JK, Scott RC, Holmes GL, Lenck-Santini PP (2010) Hippocampal interictal spikes disrupt cognition in rats. Ann Neurol 67:250–257

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kleen JK, Scott RC, Lenck-Santini PP, Holmes GL (2012) Cognitive and behavioral co-morbidities of epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. National Center for Biotechnology Information, Bethesda

    Google Scholar 

  30. Kowalczyk T, Bocian R, Konopacki J (2013) The generation of theta rhythm in hippocampal formation maintained in vitro. Eur J Neurosci 37:679–699

    Article  PubMed  Google Scholar 

  31. Larson J, Lynch G (1986) Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232:985–988

    Article  CAS  PubMed  Google Scholar 

  32. Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:347–350

    Article  CAS  PubMed  Google Scholar 

  33. Larson J, Xiao P, Lynch G (1993) Reversal of LTP by theta frequency stimulation. Brain Res 600:97–102

    Article  CAS  PubMed  Google Scholar 

  34. Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172

    CAS  PubMed  Google Scholar 

  35. Lu J, Karadsheh M, Delpire E (1999) Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol 39:558–568

    Article  CAS  PubMed  Google Scholar 

  36. Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 550:873–887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Majak K, Pitkänen A (2004) Do seizures cause irreversible cognitive damage? Evidence from animal studies. Epilepsy Behav 5(Suppl 1):S35–S44

    Article  PubMed  Google Scholar 

  38. Marques CM, Caboclo LO, da Silva TI, Noffs MH, Carrete H Jr, Lin K, Lin J, Sakamoto AC, Yacubian EM (2007) Cognitive decline in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsy Behav 10:477–485

    Article  PubMed  Google Scholar 

  39. Meador KJ (2006) Cognitive and memory effects of the new antiepileptic drugs. Epilepsy Res 68:63–67

    Article  PubMed  Google Scholar 

  40. Mehta AK, Ticku MK (1999) An update on GABAA receptors. Brain Res Rev 29:196–217

    Article  CAS  PubMed  Google Scholar 

  41. Miki T, Zwingman TA, Wakamori M, Lutz CM, Cook SA, Hosford DA, Herrup K, Fletcher CF, Mori Y, Frankel WN, Letts VA (2008) Two novel alleles of tottering with distinct Ca(v)2.1 calcium channel neuropathologies. Neuroscience 155:31–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Montgomery SM, Buzsáki G (2007) Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc Natl Acad Sci U S A 104:14495–14500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T et al (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402

    Article  CAS  PubMed  Google Scholar 

  44. Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, Copeland NG, Jenkins NA, Matsushita K, Matsuyama Z, Imoto K (2000) Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg rol). J Neurosci 20:5654–5662

    CAS  PubMed  Google Scholar 

  45. Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60

    Article  CAS  PubMed  Google Scholar 

  46. Noebels JL (1984) A single gene error of noradrenergic axon growth synchronizes central neurones. Nature 310:409–411

    Article  CAS  PubMed  Google Scholar 

  47. Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204:1334–1336

    Article  CAS  PubMed  Google Scholar 

  48. O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109

    Article  PubMed  Google Scholar 

  49. Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M (1999) A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 93:61–67

    Article  CAS  PubMed  Google Scholar 

  50. Poulter MO, Barker JL, O'Carroll AM, Lolait SJ, Mahan LC (1992) Differential and transient expression of GABAA receptor α-subunit mRNAs in the developing rat CNS. J Neurosci 12:2888–2900

    CAS  PubMed  Google Scholar 

  51. Qian J, Noebels JL (2000) Presynaptic Ca2+ influx at a mouse central synapse with Ca2+ channel subunit mutations. J Neurosci 20:163–170

    CAS  PubMed  Google Scholar 

  52. Rajakulendran S, Graves TD, Labrum RW, Kotzadimitriou D, Eunson L, Davis MB, Davies R, Wood NW, Kullmann DM, Hanna MG, Schorge S (2010) Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy. J Physiol 588:1905–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Sasaki S, Huda K, Inoue T, Miyata M, Imoto K (2006) Impaired feedforward inhibition of the thalamocortical projection in epileptic Ca2+ channel mutant mice, tottering. J Neurosci 26:3056–3065

    Article  CAS  PubMed  Google Scholar 

  54. Shimono K, Brucher F, Granger R, Lynch G, Taketani M (2000) Origins and distribution of cholinergically induced β rhythms in hippocampal slices. J Neurosci 20:8462–8473

    CAS  PubMed  Google Scholar 

  55. Shin R, Kobayashi K, Hagihara H, Kogan JH, Miyake S, Tajinda K, Walton NM, Gross AK, Heusner CL, Chen Q, Tamura K, Miyakawa T, Matsumoto M (2013) The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease. Bipolar Disord 15:405–421

    Article  PubMed Central  PubMed  Google Scholar 

  56. Sillanpää M, Jalava M, Kaleva O, Shinnar S (1998) Long-term prognosis of seizures with onset in childhood. N Engl J Med 338:1715–1722

    Article  PubMed  Google Scholar 

  57. Stein V, Hermans-Borgmeyer I, Jentsch TJ, Hübner CA (2004) Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride. J Comp Neurol 468:57–64

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki SS, Smith GK (1987) Spontaneous EEG spikes in the normal hippocampus. I. Behavioral correlates, laminar profiles and bilateral synchrony. Electroencephalogr Clin Neurophysiol 67:348–359

    Article  CAS  PubMed  Google Scholar 

  59. Swann JW, Smith KL, Brady RJ (1993) Localized excitatory synaptic interactions mediate the sustained depolarization of electrographic seizures in developing hippocampus. J Neurosci 13:4680–4689

    CAS  PubMed  Google Scholar 

  60. Tehrani MH, Baumgartner BJ, Liu SC, Barnes EM Jr (1997) Aberrant expression of GABAA receptor subunits in the tottering mouse: an animal model for absence seizures. Epilepsy Res 28:213–223

    Article  CAS  PubMed  Google Scholar 

  61. Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747

    Article  CAS  PubMed  Google Scholar 

  62. Urrestarazu E, Jirsch JD, LeVan P, Hall J, Avoli M, Dubeau F, Gotman J (2006) High-frequency intracerebral EEG activity (100–500 Hz) following interictal spikes. Epilepsia 47:1465–1476

    Article  PubMed  Google Scholar 

  63. Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926

    Article  CAS  PubMed  Google Scholar 

  64. Wakamori M, Yamazaki K, Matsunodaira H, Teramoto T, Tanaka I, Niidome T, Sawada K, Nishizawa Y, Sekiguchi N, Mori E, Mori Y, Imoto K (1998) Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem 273:34857–34867

    Article  CAS  PubMed  Google Scholar 

  65. Williams JH, Kauer JA (1997) Properties of carbachol-induced oscillatory activity in rat hippocampus. J Neurophysiol 78:2631–2640

    CAS  PubMed  Google Scholar 

  66. Wong RK, Traub RD, Miles R (1986) Cellular basis of neuronal synchrony in epilepsy. Adv Neurol 44:583–592

    CAS  PubMed  Google Scholar 

  67. Zwingman TA, Neumann PE, Noebels JL, Herrup K (2001) Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J Neurosci 21:1169–1178

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Japan Society for the Promotion of Science. A.N. is a research fellow of the Japan Society for the Promotion of Science. We thank Alpha MED Scientific, Inc. for supporting the MED system and Dr. T. Manabe (University of Tokyo) for helpful advice.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Mori.

Additional information

Akito Nakao and Takafumi Miki contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakao, A., Miki, T., Shimono, K. et al. Compromised maturation of GABAergic inhibition underlies abnormal network activity in the hippocampus of epileptic Ca2+ channel mutant mice, tottering . Pflugers Arch - Eur J Physiol 467, 737–752 (2015). https://doi.org/10.1007/s00424-014-1555-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1555-6

Keywords

Navigation