Skip to main content
Log in

GLP-1: 10-year follow-up after Roux-en-Y gastric bypass

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Glucagon-like peptide-1 (GLP-1) is a hormone widely studied in the short-term postoperative follow-up of Roux-en-Y gastric bypass due to its elevation and association with improvement of the glucose metabolism, but there are few studies in 10 years after RYGB follow-up with the same patient.

Methods

Twenty morbidity obesity patients were submitted to RYGB; these patients were divided into two groups: normal glucose-tolerant morbidly obese patients (NGT) 11 patients and abnormal glucose metabolism morbidly obese patients (AGM) 9 patients. Oral glucose tolerance test (OGTT) was done during four different periods: T1 (first evaluation), T2 (pre-surgery), T3 (9 months after surgery) and T4 (10 years after surgery).

Results

Groups were matched for age and gender, and as NGT and AGM had BMI of 46.31 ± 5.03 kg/m2 and 50.87 ± 10.31 kg/m2. After 10 years of RYGB, they were obesity grade I with BMI for NGT 32.45 ± 4.99 kg/m2 and AGM 34.85 ± 4.46 kg/m2. Plasma glucose levels decreased NGT group at T4 period had a significant reduction at 120 min after OGTT for NGT 55.49 ± 17.15 mg/dL (p˂0.001). Insulin levels changed from T1 to T4 for the NGT group. GLP-1 curves were statistically different between the NGT and AGM groups. The AGM group had a higher mean for GLP-1 secretion at T4 period and at 30 min of OGTT 63.85 ± 37.98 pmol/L when compared to NGT 50.73 ± 24.82 pmol/L with AGM > NGT with p˂0.001.

Conclusion

Evaluation of the same patient during 4 different periods shows that, even with weight regain, after 10-years of RYGB high levels of GLP-1 remained which can be associated with metabolic improvement especially at the NGT group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sjöström L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B et al (2004) Lifestyle, diabetes and cardiovascular risk factor ten years after bariatric surgery. N Engl J Med 351:2683–2693

    PubMed  Google Scholar 

  2. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD et al (2007) Long-term mortality after gastric bypass surgery. N Engl J Med 357:753–761

    CAS  PubMed  Google Scholar 

  3. Kashyap SR, Bhatt DL, Wolski K, Watanabe RM, Abdul-Ghani M, Abood B et al (2013) Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care 36:2175–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Holst J, Madsbad S (2016) Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor. Surg Obes Relat Dis 12:1236–1242

    PubMed  Google Scholar 

  5. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K et al (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292:1724–1737

    CAS  PubMed  Google Scholar 

  6. Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B (2007) Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 30:1709–1716

    PubMed  Google Scholar 

  7. Jørgensen NB, Dirksen C, Bojsen-Møller KN, Jacobsen SH, Worm D, Hansen DL, Kristiansen VB, Naver L, Madsbad S, Holst JJ (2013) Exaggerated glucagon-like peptide 1 response is important for improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes 62(9):3044–3052. https://doi.org/10.2337/db13-0022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dirksen C, Bojsen-Møller KN, Jørgensen NB, Jacobsen SH, Kristiansen VB, Naver LS, Hansen DL, Worm D, Holst JJ, Madsbad S (2013) Exaggerated release and preserved insulinotropic action of glucagon-like peptide-1 underlie insulin hypersecretion in glucose-tolerant individuals after Roux-en-Y gastric bypass. Diabetologia 56(12):2679–2687. https://doi.org/10.1007/s00125-013-3055-1

    Article  CAS  PubMed  Google Scholar 

  9. Bojanowska E (2005) Physiology and pathophysiology of glucagon-like peptide-1 (GLP-1): the role of GLP-1 in the pathogenesis of diabetes mellitus, obesity, and stress. Med Sci Monit 11:RA271–RA278

    CAS  PubMed  Google Scholar 

  10. Gutzwiller JP, Degen L, Heuss L, Beglinger C (2004) Glucagon-like peptide 1 (GLP-1) and eating. Physiol Behav 82:17–19

    CAS  PubMed  Google Scholar 

  11. Knop FK, Aaboe K, Vilsbøll T, Vølund A, Holst JJ, Krarup T et al (2012) Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes Obes Metab 14:500–510

    CAS  PubMed  Google Scholar 

  12. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439

    CAS  PubMed  Google Scholar 

  13. Jiménez A, Casamitjana R, Flores L, Delgado S, Lacy A, Vidal J (2013) GLP-1 and the long-term outcome of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery in morbidly obese subjects. Ann Surg 257:894–899

    PubMed  Google Scholar 

  14. de Carvalho CP, Marin DM, de Souza AL, Pareja JC, Chaim EA, de Barros MS et al (2009) GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism. Obes Surg 19:313–320

    PubMed  Google Scholar 

  15. Dirksen C, Jørgensen NB, Bojsen-Møller KN, Jacobsen SH, Hansen DL, Worm D, Holst JJ, Madsbad S (2012) Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia 55(7):1890–1901. https://doi.org/10.1007/s00125-012-2556-7

    Article  CAS  PubMed  Google Scholar 

  16. Kashyap SR, Daud S, Kelly KR et al (2010) Acute effects of gastric bypass versus gastric restrictive surgery on beta-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes (Lond) 34(3):462–471. https://doi.org/10.1038/ijo.2009.254

    Article  CAS  Google Scholar 

  17. Holdstock C, Zethelius B, Sundbom M, Karlsson FA, Edén EB (2008) Postprandial changes in gut regulatory peptides in gastric bypass patients. Int J Obes (Lond) 32(11):1640–1646. https://doi.org/10.1038/ijo.2008.157

    Article  CAS  Google Scholar 

  18. Jørgensen NB, Bojsen-Møller KN, Dirksen C et al (2019) Sustained Improvements in Glucose Metabolism Late After Roux-En-Y Gastric Bypass Surgery in Patients with and Without Preoperative Diabetes. Sci Rep 9:15154. https://doi.org/10.1038/s41598-019-51516-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dar MS, Chapman WH 3rd, Pender JR, Drake AJ 3rd, O’Brien K, Tanenberg RJ et al (2012) GLP-1 response to a mixed meal: What happens ten years after Roux-en Y Gastric Bypass (RYGB)? Obes Surg 22:1077–1083

    PubMed  Google Scholar 

  20. Santo MA, Riccioppo D, Pajecki D, Kawamoto F, de Cleva R, Antonangelo L et al (2016) Weight regain after gastric bypass: influence of gut hormones. Obes Surg 26:919–925

    PubMed  Google Scholar 

  21. Magro DO, Geloneze B, Delfini R, Pareja BC, Callejas F, Pareja JC (2008) Long-term Weight Regain after Gastric bypass: A 5-year Prospective Study. Obes Surg 18:648–651

    PubMed  Google Scholar 

  22. American Diabetes Association Report ADA (2018) Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018(41):S13–S27

    Google Scholar 

  23. Kahles F, Meyer C, Möllmann J, Diebold S, Findeisen HM, Lebherz C, Trautwein C, Koch A, Tacke F, Marx N, Lehrke M (2014) GLP-1 Secretion Is Increased by Inflammatory Stimuli in an IL-6–Dependent Manner, Leading to Hyperinsulinemia and Blood Glucose Lowering. Diabetes 63(10):3221–3229

    CAS  PubMed  Google Scholar 

  24. de Souza AH, Tang J, Yadev AK et al (2020) Intra-islet GLP-1, but not CCK, is necessary for β-cell function in mouse and human islets. Sci Rep 10:2823

    PubMed  PubMed Central  Google Scholar 

  25. Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fulcher GR, Farrer M, Walker M, Rodham D, Clayton B, Alberti KM (1991) A comparison of measurements of lean body mass derived by bioelectrical impedance, skinfold thickness and total body potassium. A study in obese and non-obese normal subjects. Scand J Clin Lab Invest 51(3):245–253. https://doi.org/10.3109/00365519109091611

    Article  CAS  PubMed  Google Scholar 

  27. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment; insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    CAS  PubMed  Google Scholar 

  28. McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, Temple LA et al (2001) Diagnosing insulin resistance in the general population. Diabetes Care 24:460–464

    CAS  PubMed  Google Scholar 

  29. Radziuk J (2000) Insulin sensitivity and its measurement: structural commonalities among the methods. J Clin Endocrinol Metab 85:4426–4433

    CAS  PubMed  Google Scholar 

  30. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27:1487–1495

    PubMed  Google Scholar 

  31. Conover WJ (1998) Practical nonparametric statistics. New York: Wiley

    Google Scholar 

  32. Conover W, Iman R (1981) Rank Transformations as a Bridge Between Parametric and Nonparametric Statistics. Am Stat 35(3):124–129. https://doi.org/10.2307/2683975

    Article  Google Scholar 

  33. Liang K, Zeger S (1986) Longitudinal Data Analysis Using Generalized Linear Models. Biometrika 73(1):13–22. https://doi.org/10.2307/2336267

    Article  Google Scholar 

  34. Allison PD (2012) Handling missing data by maximum likelihood. Keynote presentation at the SAS Global Forum. Retrieved from http://support.sas.com/resources/papers/proceedings12/312–2012.pdf

  35. Stokes ME, Davis CS, Koch GG (2000) Categorical data analysis using SAS system 2nd edition. Cary

  36. Paul S, Zhang X (2014) Small sample GEE estimation of regression parameters for longitudinal data. Stat Med 33:3869–3881. https://doi.org/10.1002/sim.6198

    Article  PubMed  Google Scholar 

  37. Li Z, McKeague IW (2013) Power and Sample Size Calculations for Generalized Estimating Equations via Local Asymptotics. Stat Sin 23(1):231–250. https://doi.org/10.5705/ss.2011.081

    Article  PubMed  PubMed Central  Google Scholar 

  38. SAS INSTITUTE Inc. SAS/STAT. User’s guide, version 9.4. Cary: SAS Institute, 2002–2012

  39. Zilberstein B, Galvão Neto M, Ramos AC (2002) O papel da cirurgia no tratamento da obesidade. Rev Bras Med São Paulo 59(4):258–264

    Google Scholar 

  40. Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L, Clegg AJ (2009) The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess 13(41):1-190-215–357, iii–iv. https://doi.org/10.3310/hta13410

    Article  Google Scholar 

  41. Costa JV, Duarte JS (2006) Tecido adiposo e adipocinas. Acta Med Port 19:251–256

    CAS  PubMed  Google Scholar 

  42. Sjöström L (2013) Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Intern Med 273:219–234

    PubMed  Google Scholar 

  43. Mango VL, Frishman WH (2006) Physiologic, psychologic, and metabolic consequences of bariatric surgery. Cardiol Rev 14(5):232–237

    PubMed  Google Scholar 

  44. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H et al (2012) Bariatric surgery and long-term cardiovascular events. JAMA 307:56–65

    PubMed  Google Scholar 

  45. Drucker DJ (2001) Minireview: the glucagon-like peptides. Endocrinology 142:521–527

    CAS  PubMed  Google Scholar 

  46. Mason EE, Ito C (1967) Gastric bypass in obesity. Surg Clin North Am 47:1345–1351

    CAS  PubMed  Google Scholar 

  47. Nausheen S, Shah IH, Pezeshki A et al (2013) Effects of sleeve gastrectomy and ileal transposition, alone and in combination, on food intake, body weight, gut hormones, and glucose metabolism in rats. Am J Physiol Endocrinol Metab 305:E507–E518. https://doi.org/10.1152/ajpendo.00130.2013

    Article  CAS  PubMed  Google Scholar 

  48. Ribeiro-Parenti L, Jarry AC, Cavin JB et al (2021) Bariatric surgery induces a new gastric mucosa phenotype with increased functional glucagon-like peptide-1 expressing cells. Nat Commun 12:110. https://doi.org/10.1038/s41467-020-20301-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L et al (2012) Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 366:1577–1585

    CAS  PubMed  Google Scholar 

  50. Hickey MS, Pories WJ, MacDonald KG Jr, Cory KA, Dohm GL, Swanson MS et al (1998) A new paradigm for type 2 diabetes mellitus: could it be a disease of the foregut? Ann Surg 227:637–643. discussion 643-44

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nannipieri M, Baldi S, Mari A, Colligiani D, Guarino D, Camastra S, Barsotti E, Berta R, Moriconi D, Bellini R, Anselmino M, Ferrannini E (2013) Roux-en-Y gastric bypass and sleeve gastrectomy: mechanisms of diabetes remission and role of gut hormones. J Clin Endocrinol Metab 98(11):4391–4399

    CAS  PubMed  Google Scholar 

  52. Mingrone G, Panunzi S, De Gaetano A et al (2021) Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 397:293–304. https://doi.org/10.1016/S0140-6736(20)32649-0

    Article  PubMed  Google Scholar 

  53. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD et al (2014) Bariatric surgery versus intensive medical therapy for diabetes – 3-year outcomes. N Engl J Med 370:2002–2013

    PubMed  PubMed Central  Google Scholar 

  54. Geloneze B, Tambascia MA (2006) Avaliação laboratorial e diagnóstico da resistência insulínica. Arq Bras Endocrinol Metab 50:208–215

    Google Scholar 

  55. Jorgensen NB et al (2012) Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance. Am J Physiol Endocrinol Metab 303:E122-131

    CAS  PubMed  Google Scholar 

  56. Marin DM (2007) Resistencia a insulina e função da celula ‘beta’: efeito da perda de peso após bypass gastrico. 188p. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas, SP. Available : http://repositorio.unicamp.br/jspui/handle/REPOSIP/311986 Access: Mar 2021

  57. Bojsen-Møller KN, Dirksen C, Jørgensen NB et al (2014) Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass. Diabetes 63:1725–1737

    PubMed  Google Scholar 

  58. Patti ME, McMahon G, Mun EC, Bitton A, Holst JJ, Goldsmith J et al (2005) Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia 48:2236–2240

    CAS  PubMed  Google Scholar 

  59. Kandel D, Bojsen-Moller KN, Svane MS et al (2019) Mechanisms of action of a carbohydrate-reduced, high-protein diet in reducing the risk of postprandial hypoglycemia after Roux-en-Y gastric bypass surgery. Am J Clin Nutr 110:296–304

    PubMed  Google Scholar 

  60. Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ (2007) Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 3:597–601

    PubMed  PubMed Central  Google Scholar 

  61. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V et al (2006) Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 243:108–114

    PubMed  PubMed Central  Google Scholar 

  62. Whitson BA, Leslie DB, Kellogg TA, Maddaus MA, Buchwald H, Billington CJ et al (2007) Entero-endocrine changes after gastric bypass in diabetic and nondiabetic patients: a preliminary study. J Surg Res 141:31–39

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all those who somehow contributed to this project. We specially thank Daniel Henrique do Amaral Corrêa, Ph.D., for the bibliographical references, organization, and statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conception or design of the work: Camila Carvalho, Elintom Adami Chaim, and Sarah Monte Alegre. Data collection: Camila Carvalho, Joelma Silvia Giorgetti, Viviane Bressane Claus Molina, Gisele Almeida Batista, Louise Franciscato Trivelato Duran, and Débora Puzzi Fernandes. Data analysis and interpretation: Aglécio Luiz de Souza, Sarah Monte Alegre, and Camila Carvalho. Drafting the article: Camila Carvalho, Elintom Adami Chaim, Sarah Monte Alegre, and Raquel Gonçalves. Critical revision of the article: Camila Carvalho, Elintom Dami Chaim, Sarah Monte Alegre, and Aglécio Luiz de Souza. Final approval of the version to be published: Camila Carvalho, Aglécio Luiz de Souza, Gisele Almeida Batista, Louise Franciscato Trivelato Duran, Débora Puzzi Fernandes, Viviane Bressane Claus Molina, Raquel Gonçalves, Joelma Silvia Giorgetti1, Elintom Adami Chaim, and Sarah Monte Alegre.

Corresponding author

Correspondence to Camila Carvalho.

Ethics declarations

Ethics approval

The study had protocol approved by the Research Ethics Committee of University of Campinas-UNICAMP, School of the Faculty of Medical Sciences (FCM-UNICAMP) number 31989314.3.0000.5404.

Ethical statement

All procedures performed in this study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments. This study was approved by the institutional review board.

Informed consent statement

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, C., de Souza, A.L., Batista, G.A. et al. GLP-1: 10-year follow-up after Roux-en-Y gastric bypass. Langenbecks Arch Surg 407, 559–568 (2022). https://doi.org/10.1007/s00423-021-02341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-021-02341-3

Keywords

Navigation