Skip to main content
Log in

EEG rhythm separation and time–frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Motor imagery electroencephalogram (EEG) is widely employed in brain–computer interface (BCI) systems. As a time–frequency analysis method for nonlinear and non-stationary signals, multivariate empirical mode decomposition (MEMD) and its noise-assisted version (NA-MEMD) has been widely used in the preprocessing step of BCI systems for separating EEG rhythms corresponding to specific brain activities. However, when applied to multichannel EEG signals, MEMD or NA-MEMD often demonstrate low robustness to noise and high computational complexity. To address these issues, we have explored the advantages of our recently proposed fast multivariate empirical mode decomposition (FMEMD) and its noise-assisted version (NA-FMEMD) for analyzing motor imagery data. We emphasize that FMEMD enables a more accurate estimation of EEG frequency information and exhibits a more noise-robust decomposition performance with improved computational efficiency. Comparative analysis with MEMD on simulation data and real-world EEG validates the above assertions. The joint average frequency measure is employed to automatically select intrinsic mode functions that correspond to specific frequency bands. Thus, FMEMD-based classification architecture is proposed. Using FMEMD as a preprocessing algorithm instead of MEMD can improve the classification accuracy by 2.3% on the BCI Competition IV dataset. On the Physiobank Motor/Mental Imagery dataset and BCI Competition IV Dataset 2a, FMEMD-based architecture also attained a comparable performance to complex algorithms. The results indicate that FMEMD proficiently extracts feature information from small benchmark datasets while mitigating dimensionality constraints resulting from computational complexity. Hence, FMEMD or NA-FMEMD can be a powerful time–frequency preprocessing method for BCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The mode mixing problem is defined as a signal IMF either consisting of signals of widely disparate scales, or a signal of a similar scale residing in different IMFs (Ur Rehman and Mandic 2011). The NA-MEMD method can effectively alleviate the mode mixing since it enforces the signal decomposition process based on the quasi-dyadic filter bank structure of MEMD.

  2. The implementations of LDA and SVM in the MATLAB Classification Learner App are used in this paper.

  3. The parameters of CSP filters are generated by only the training data sets.

References

  • Altaheri H, Muhammad G, Alsulaiman M (2022) Physics-informed attention temporal convolutional network for EEG-based motor imagery classification. IEEE Trans Ind Inf 19(2):2249–58

    Article  Google Scholar 

  • Anderson CW, Stolz EA, Shamsunder S (1998) Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Trans Biomed Eng 45(3):277–86

    Article  CAS  PubMed  Google Scholar 

  • Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). IEEE, pp 2390–2397

  • Bashar SK, Bhuiyan MIH (2016) Classification of motor imagery movements using multivariate empirical mode decomposition and short time Fourier transform based hybrid method. Eng Sci Technol Int J 19(3):1457–64

    Google Scholar 

  • Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G (2007) The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37(2):539–50

    Article  PubMed  Google Scholar 

  • Boashash B (1992) Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc IEEE 80(4):520–38

    Article  ADS  Google Scholar 

  • Bostanov V, Kotchoubey B (2004) Recognition of affective prosody: continuous wavelet measures of event-related brain potentials to emotional exclamations. Psychophysiology 41(2):259–68

    Article  PubMed  Google Scholar 

  • Craik A, He Y, Contreras-Vidal JL (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng 16(3):031001

    Article  PubMed  Google Scholar 

  • Dai M, Zheng D, Na R, Wang S, Zhang S (2019) EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3):551

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R et al (2020) Parameterizing neural power spectra into periodic and aperiodic components. Nat Neurosci 23(12):1655–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dose H, Møller JS, Iversen HK, Puthusserypady S (2018) An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Syst Appl 114:532–42

    Article  Google Scholar 

  • Doud AJ, Lucas JP, Pisansky MT, He B (2011) Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain–computer interface. PLoS ONE 6(10):e26322

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur P, Pachori RB, Wang H, Prasad G (2018) A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst Appl 95:201–11

    Article  Google Scholar 

  • Graimann B, Allison B, Pfurtscheller G (2009) Brain–computer interfaces: a gentle introduction. In: Brain–computer interfaces. Springer, pp 1–27

  • Hernández LG, Antelis JM (2018) A comparison of deep neural network algorithms for recognition of EEG motor imagery signals. In: Mexican conference on pattern recognition. Springer, pp 126–134

  • Hu J, Xiao D, Mu Z (2009) Application of energy entropy in motor imagery EEG classification. Int J Digit Content Technol Appl 3(2):83–90

    Google Scholar 

  • Huang NE, Zheng S, Long SR, Wu MC, Shih HH, Zheng Q et al (1971) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Math Phys Eng Sci 1998(454):903–95

    Google Scholar 

  • Huang NE, Wu MLC, Long SR, Shen SS, Qu W, Gloersen P et al (2003) A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 459(2037):2317–45

    Article  ADS  MathSciNet  Google Scholar 

  • Jin J, Xiao R, Daly L, Miao Y, Wang X, Cichock A (2020) Internal feature selection method of CSP based on L1-norm and Dempster–Shafer theory. IEEE Trans Neural Netw Learn Syst 32:4814–25

    Article  Google Scholar 

  • Kevric J, Subasi A (2017) Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Process Control 31:398–406

    Article  Google Scholar 

  • Kim Y, Ryu J, Kim KK, Took CC, Mandic DP, Park C (2016) Motor imagery classification using mu and beta rhythms of EEG with strong uncorrelating transform based complex common spatial patterns. Comput Intell Neurosci 2016

  • Kumar S, Sharma A, Tsunoda T (2017) An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information. BMC Bioinform 18(16):545

    Article  Google Scholar 

  • Kumar S, Mamun K, Sharma A (2017) CSP-TSM: optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI. Comput Biol Med 91:231–42

    Article  PubMed  Google Scholar 

  • Lang X, Zheng Q, Zhang Z, Lu S, Xie L, Horch A et al (2018) Fast multivariate empirical mode decomposition. IEEE Access 6:65521–38

    Article  Google Scholar 

  • Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng 15(5):056013

    Article  PubMed  Google Scholar 

  • Lebedev MA, Nicolelis MA (2006) Brain-machine interfaces: past, present and future. Trends Neurosci 29(9):536–46

    Article  CAS  PubMed  Google Scholar 

  • Lemm S, Blankertz B, Curio G, Muller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52(9):1541–8

    Article  PubMed  Google Scholar 

  • Lilly JM, Olhede SC (2009) Bivariate instantaneous frequency and bandwidth. IEEE Trans Signal Process 58(2):591–603

    Article  ADS  MathSciNet  Google Scholar 

  • Lilly JM, Olhede SC (2011) Analysis of modulated multivariate oscillations. IEEE Trans Signal Process 60(2):600–12

    Article  ADS  MathSciNet  Google Scholar 

  • Loboda A, Margineanu A, Rotariu G, Lazar AM (2014) Discrimination of EEG-based motor imagery tasks by means of a simple phase information method. Int J Adv Res Artif Intell 3(10)

  • Lotte F, Guan C (2010) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–62

    Article  PubMed  Google Scholar 

  • Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A et al (2018) A review of classification algorithms for EEG-based brain-computer interfaces: a 10-year update. J Neural Eng 15(3):031005.1-031005.28

    Article  Google Scholar 

  • Mandic DP, ur Rehman N, Wu Z, Huang NE (2013) Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis. IEEE Signal Process Mag 30(6):74–86

    Article  ADS  Google Scholar 

  • Mane R, Chew E, Chua K, Ang KK, Robinson N, Vinod AP et al (2021) FBCNet: a multi-view convolutional neural network for brain-computer interface. arXiv preprint arXiv:2104.01233

  • Mousavi EA, Maller JJ, Fitzgerald PB, Lithgow BJ (2011) Wavelet common spatial pattern in asynchronous offline brain computer interfaces. Biomed Signal Process Control 6(2):121–8

    Article  Google Scholar 

  • Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–79

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Park C, Looney D, Kidmose P, Ungstrup M, Mandic DP (2011) Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng 19(4):366–73

    Article  PubMed  Google Scholar 

  • Park C, Looney D, Rehman NU, Ahrabian A, Mandic DP (2013) Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng 21(1):10–22

    Article  PubMed  Google Scholar 

  • Park C, Took CC, Mandic DP (2013) Augmented complex common spatial patterns for classification of noncircular EEG from motor imagery tasks. IEEE Trans Neural Syst Rehabil Eng 22(1):1–10

    Article  Google Scholar 

  • Park C, Plank M, Snider J, Kim S, Huang HC, Gepshtein S et al (2014) EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: multivariate empirical mode decomposition analysis. IEEE Trans Neural Syst Rehabil Eng 22(5):1083–96

    Article  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103(6):642–51

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Brunner C, Schlögl A, Da Silva FL (2006) Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1):153–9

    Article  CAS  PubMed  Google Scholar 

  • Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–6

    Article  CAS  PubMed  Google Scholar 

  • Rehman N, Mandic DP (2010) Multivariate empirical mode decomposition. Proc Math Phys Eng Sci 466(2117):1291–302

    MathSciNet  Google Scholar 

  • Rehman N, Naveed K, Safdar M, Ehsan S, McDonald-Maier K (2015) Dynamically sampled multivariate empirical mode decomposition. Electron Lett 51(24):2049–51

    Article  ADS  Google Scholar 

  • Rilling G, Flandrin P, Gonçalves P, Lilly JM (2007) Bivariate empirical mode decomposition. IEEE Signal Process Lett 14(12):936–9

    Article  ADS  Google Scholar 

  • Robinson N, Vinod AP, Ang KK, Tee KP, Guan CT (2013) EEG-based classification of fast and slow hand movements using wavelet-CSP algorithm. IEEE Trans Biomed Eng 60(8):2123–32

    Article  PubMed  Google Scholar 

  • Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) A general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51:1034–43

    Article  PubMed  Google Scholar 

  • Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–43

    Article  PubMed  Google Scholar 

  • Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M et al (2017) Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 38(11):5391–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabar YR, Halici U (2016) A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng 14(1):016003

    Article  PubMed  Google Scholar 

  • Tolić M, Jović F (2013) Classification of wavelet transformed EEG signals with neural network for imagined mental and motor tasks. Kinesiol Int J Fundam Appl Kinesiol 45(1):130–8

    Google Scholar 

  • Ur Rehman N, Mandic DP (2011) Filter bank property of multivariate empirical mode decomposition. IEEE Trans Signal Process 59(5):2421–6

    Article  ADS  MathSciNet  Google Scholar 

  • Wang Z, Maier A, Logothetis NK, Liang H (2008) Single-trial classification of bistable perception by integrating empirical mode decomposition, clustering, and support vector machine. EURASIP J Adv Signal Process 2008:1–8

    Article  ADS  Google Scholar 

  • Wang P, Jiang A, Liu X, Shang J, Zhang L (2018) LSTM-based EEG classification in motor imagery tasks. IEEE Trans Neural Syst Rehabil Eng 26(11):2086–95

    Article  PubMed  Google Scholar 

  • Yuan H, He B (2014) Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans Biomed Eng 61(5):1425–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Doud A, Gururajan A, He B (2008) Cortical imaging of event-related (de) synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain. IEEE Trans Neural Syst Rehabil Eng 16(5):425–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Duan F, Sole-Casals J, Dinares-Ferran J, Cichocki A, Yang Z et al (2019) A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access 7:15945–54

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank sponsor and financial support from National Natural Science Foundation of P.R. China (Grant Nos. 61134007, 61374121), the 111 Project (Grant No. B07031), and the Shenzhen Science and Technology Program (Grant No. KQTD20200820113106007).

Author information

Authors and Affiliations

Authors

Contributions

Yang Jiao and Qian Zheng wrote the main manuscript text and prepared most of figures. Yi pan provides our project funding. Lei Xie, Xun Lang and Dan Qiao assist in finishing table1 and table2. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Qian Zheng or Yi Pan.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Zheng, Q., Qiao, D. et al. EEG rhythm separation and time–frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI. Biol Cybern (2024). https://doi.org/10.1007/s00422-024-00984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00422-024-00984-1

Keywords

Navigation