Skip to main content
Log in

Metabolic and muscular factors limiting aerobic exercise in obese subjects

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to understand the role of central (cardiovascular O2 delivery) and peripheral factors (muscle level) in limiting the maximal aerobic performance in obese (OB) subjects.

Methods

Fifteen OB (mean age ± SD 25 ± 7 years; BMI 43 ± 7 kg/m2) and 13 lean sedentary subjects (CTRL, age 27 ± 7 years; BMI 22 ± 3 kg/m2) participated in this study. Oxygen uptake (VO2), hearth rate (HR) and cardiac output (CO) were measured during cycle ergometer (CE) and knee extension (KE) incremental tests. Maximal voluntary contractions (MVCs) of knee extensor muscles were performed before and immediately after the two tests.

Results

VO2peak, HR peak and CO peak were significantly higher in CE than KE (+ 126%, + 33% and + 46%, respectively, p < 0.001), both in OB and CTRL subjects, without differences between the two subgroups. Maximal work rate was lower in OB than CTRL (191 ± 38 vs 226 ± 39 W, p < 0.05) in CE, while it was similar between the two subgroups in KE. Although CE and KE determined a reduction of MVC in both subgroups, MVC resulted less decreased after CE than KE exercises (− 14 vs − 32%, p < 0.001) in OB, while MVC decrements were similar after the two exercises in CTRL (− 26% vs − 30%, p > 0.05, for CE and KE, respectively).

Conclusions

The lower muscle fatigue observed in OB after CE compared to KE test suggests that central factors could be the most important limiting factor during cycling in OB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a vO2 diff:

Arteriovenous oxygen difference

BM:

Body mass

BMI:

Body mass index

CE:

Cycle ergometer

CTRL:

Control group

CO:

Cardiac output

ΔMVC:

Maximal voluntary contraction changes in percentage

FM:

Fat mass

FFM:

Fat-free mass

HR:

Heart rate

KE:

Knee extension exercise

MVC:

Maximal voluntary contractions of the knee extensor muscles

MVC_end:

MVC immediately after the end of incremental exercise

OB:

Obese

Tlim:

Time to exhaustion

VCO2 :

CO2 output

VO2 :

Pulmonary O2 uptake

VolTM :

MUSCLE thigh volume

References

  • Abdelmoula A, Martin V, Bouchant A et al (2012) Knee extension strength in obese and nonobese male adolescents. Appl Physiol Nutr Metab 37:269–275

    Article  PubMed  Google Scholar 

  • Alemayehu HK, Salvadego D, Isola M et al (2018) Three weeks of respiratory muscle endurance training improve the O2 cost of walking and exercise tolerance in obese adolescents. Physiol Rep 6:e13888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpert MA, Omran J, Bostick BP (2016) Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function. Curr Obes Rep 5:424–434

    Article  PubMed  Google Scholar 

  • Andersen P, Saltin B (1985) Maximal perfusion of skeletal muscle in man. J Physiol 366:233–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blain GM, Hureau TJ (2017) Limitation of fatigue and performance during exercise: the brain–muscle interaction. Exp Physiol 102:3–4

    Article  PubMed  Google Scholar 

  • Blomqvist GC, Saltin B (1977) Cardio vascular adaptations to physical training. Annu Rev Physiol 39:221–231

    Article  Google Scholar 

  • Blomstrand E, Rådegran G, Saltin B (1997) Maximum rate of oxygen uptake by human skeletal muscle in relation to maximal activities of enzymes in the Krebs cycle. J Physiol 501:455–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollinger LM (2017) Potential contributions of skeletal muscle contractile dysfunction to altered biomechanics in obesity. Gait Posture 56:100–107

    Article  PubMed  Google Scholar 

  • Charloux A, Lonsdorfer-Wolf E, Richard R et al (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the ″direct″ Fick method. Eur J Appl Physiol 82:313–320

    Article  CAS  PubMed  Google Scholar 

  • Craig CL, Marshall AL, Sjöström M et al (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395

    Article  PubMed  Google Scholar 

  • Dempsey JA, Romer L, Rodman J et al (2006) Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol 151:242–250

    Article  PubMed  Google Scholar 

  • di Prampero PE (2003) Factors limiting maximal performance in humans. Eur J Appl Physiol 90:420–429

    Article  PubMed  Google Scholar 

  • Donnelly JE, Blair SN, Jakicic JM et al (2009) Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41:459–471

    Article  Google Scholar 

  • Esposito F, Mathieu-Costello O, Shabetai R et al (2010) Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors. J Am Coll Cardiol 55:1945–1954

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrero S, Perrone-Filardi P, Desiderio A et al (1996) Left ventricular systolic and diastolic function in severe obesity: a radionuclide study. Cardiology 87:347–353

    Article  Google Scholar 

  • Garcia-Vicencio S, Martin V, Kluka V et al (2015) Obesity-related differences in neuromuscular fatigue in adolescent girls. Eur J Appl Physiol 115:2421–2432

    Article  PubMed  Google Scholar 

  • Gavin TP (2004) Lower capillary density but no difference in VEGF expression in obese vs. lean young skeletal muscle in humans. J Appl Physiol 98:315–321

    Article  CAS  PubMed  Google Scholar 

  • Gray DS, Bray GA, Gemayel N, Karl K (1989) Effect of obesity on bioelectrical impedance. Am J Clin Nutr 50(2):255–260

    Article  CAS  PubMed  Google Scholar 

  • Howlett RA, Gonzalez NC, Wagner HE et al (2003) Selected contribution: skeletal muscle capillarity and enzyme activity in rats selectively bred for running endurance. J Appl Physiol 94:1682–1688

    Article  CAS  PubMed  Google Scholar 

  • Howlett RA, Kirkton SD, Gonzalez NC et al (2009) Peripheral oxygen transport and utilization in rats following continued selective breeding for endurance running capacity. J Appl Physiol 106:1819–1825

    Article  PubMed  Google Scholar 

  • Konopka AR, Asante A, Lanza IR et al (2015) Defects in mitochondrial efficiency and H2O2emissions in obese women are restored to a lean phenotype with aerobic exercise training. Diabetes 64:2104–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kress J, Pohlman A, Alverdy J, Hall J (1999) Obesity, respiratory function and breathlessness The impact of morbid obesity on oxygen cost of breathing (V˙O2RESP) at rest. Am J Respir Crit Care Med 160:883–886

    Article  CAS  PubMed  Google Scholar 

  • Lafortuna CL, Agosti F, Galli R et al (2008) The energetic and cardiovascular response to treadmill walking and cycle ergometer exercise in obese women. Eur J Appl Physiol 103:707–717

    Article  PubMed  Google Scholar 

  • Layec G, Venturelli M, Jeong E, Richardson RS (2014) The validity of anthropometric leg muscle volume estimation across a wide spectrum : From able-bodied adults to individuals with a spinal cord injury. J Appl Physiol 116:1142–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzer S, Salvadego D, Porcelli S et al (2013) Skeletal muscle oxygen uptake in obese patients: Functional evaluation by knee-extension exercise. Eur J Appl Physiol 113:2125–2132

    Article  CAS  PubMed  Google Scholar 

  • Limberg JK, De Vita MD, Blain GM, Schrage WG (2010) Muscle blood flow responses to dynamic exercise in young obese humans. J Appl Physiol 108:349–355

    Article  CAS  PubMed  Google Scholar 

  • López-Jiménez F, Cortés-Bergoderi M (2011) Obesity and the heart. Rev Esp Cardiol 64:140–149

    Article  PubMed  Google Scholar 

  • Lukaski HC, Bolonchuk WW, Hall CB, Siders WA (1986) Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol 60:1327–1332

    Article  CAS  PubMed  Google Scholar 

  • Maffiuletti NA, Jubeau M, Munzinger U et al (2007) Differences in quadriceps muscle strength and fatigue between lean and obese subjects. Eur J Appl Physiol 101:51–59

    Article  Google Scholar 

  • Maffiuletti NA, Jubeau M, Agosti F et al (2008) Quadriceps muscle function characteristics in severely obese and nonobese adolescents. Eur J Appl Physiol 103:481–484

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Ratel S, Sartorio A, Martin V (2013) The impact of obesity on in vivo human skeletal muscle function. Curr Obes Rep 2:251–260

    Article  Google Scholar 

  • Malenfant P, Joanisse DR, Thériault R et al (2001) Fat content in individual muscle fibers of lean and obese subjects. Int J Obes 25:1316–1321

    Article  CAS  Google Scholar 

  • Millet GY (2011) Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? The flush model. Sport Med 41:489–506

    Article  Google Scholar 

  • Noakes TD (2012) Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Front Physiol 3:1–13

    Article  Google Scholar 

  • Noakes TD, St. Clair Gibson A, Lambert EV (2004) From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br J Sports Med 38:511–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega BF, Lavie JC, Blair NS (2016) Obesity and cardiovascular disease. Circ Res 118:1752–1770

    Article  CAS  PubMed  Google Scholar 

  • Palmieri V, Russo C, Palmieri EA et al (2006) Isolated left ventricular diastolic dysfunction: implications for exercise left ventricular performance in patients without congestive heart failure. J Am Soc Echocardiogr 19:491–498. https://doi.org/10.1016/j.echo.2005.12.011

    Article  PubMed  Google Scholar 

  • Poirier P, Giles TD, Bray GA et al (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol 26:968–976

    Article  CAS  PubMed  Google Scholar 

  • Richard R, Lonsdorfer-Wolf E, Charloux A et al (2001) Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol 85:202–207

    Article  CAS  PubMed  Google Scholar 

  • Richardson RS, Grassi B, Gavin TP et al (1999) Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps. J Appl Physiol 86:1048–1053

    Article  CAS  PubMed  Google Scholar 

  • Rowland T, Bhargava R, Parslow D, Heptulla RA (2003) Cardiac response to progressive cycle exercise in moderately obese adolescent females. J Adolesc Heal 32:422–427

    Article  Google Scholar 

  • Salvadego D, Lazzer S et al (2011) Functional impairment of skeletal muscle oxidative metabolism during knee extension exercise after bed rest. J Appl Physiol 111:1719–1726

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvadego D, Domenis R, Lazzer S et al (2013) Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training. J Appl Physiol 114:1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Salvadego D, Sartorio A, Agosti F et al (2015) Acute respiratory muscle unloading by normoxic helium-O2 breathing reduces the O2 cost of cycling and perceived exertion in obese adolescents. Eur J Appl Physiol 115:99–109

    Article  CAS  PubMed  Google Scholar 

  • Salvadego D, Sartorio A, Agosti F et al (2017) Respiratory muscle endurance training reduces the O2 cost of cycling and perceived exertion in obese adolescents. Am J Physiol Regul Integr Comp Physiol 313(4):487–495

    Article  CAS  Google Scholar 

  • Salvadori A, Fanari P, Mazza P et al (1992) Work capacity and cardiopulmonary adaptation of the obese subject during exercise testing. Chest 101:674–679

    Article  CAS  PubMed  Google Scholar 

  • Salvadori A, Fanari P, Fontana M et al (1999) Oxygen uptake and cardiac performance in obese and normal subjects during exercise. Respiration 66:25–33

    Article  CAS  PubMed  Google Scholar 

  • Tallis J, James RS, Seebacher F (2018) The effects of obesity on skeletal muscle contractile function. J Exp Biol 221:1–14

    Google Scholar 

  • Vella CA, Ontiveros D, Zubia RY (2011) Cardiac function and arteriovenous oxygen difference during exercise in obese adults. Eur J Appl Physiol 111:915–923

    Article  PubMed  Google Scholar 

  • Vella CA, Paul DR, Bader J (2012) Cardiac response to exercise in normal-weight and obese, hispanic men and women: implications for exercise prescription. Acta Physiol 205:113–123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and control subjects who agreed to participate in the study. The study was supported by Progetti di Ricerca Corrente, Istituto Auxologico Italiano (Milan); and by Fondazione Pittini (Italy).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed research. FV, MF, GT and RDM conducted experiments. FV and MF analyzed data. FV wrote the manuscript with the help of MF. SL and AS revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Filippo Vaccari.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

Additional information

Communicated by Jean-René Lacour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaccari, F., Floreani, M., Tringali, G. et al. Metabolic and muscular factors limiting aerobic exercise in obese subjects. Eur J Appl Physiol 119, 1779–1788 (2019). https://doi.org/10.1007/s00421-019-04167-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04167-w

Keywords

Navigation