Skip to main content
Log in

Comparison of two methods of determining lung de-recruitment, using the forced oscillation technique

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Airway closure has proved to be important in a number of respiratory diseases and may be the primary functional defect in asthma. A surrogate measure of closing volume can be identified using the forced oscillation technique (FOT), by performing a deflation maneuver and examining the resultant reactance (Xrs) lung volume relationship. This study aims to determine if a slow vital capacity maneuver can be used instead of this deflation maneuver and compare it to existing more complex techniques. Three subject groups were included in the study; healthy (n = 29), asthmatic (n = 18), and COPD (n = 10) for a total of 57 subjects. Reactance lung volume curves were generated via FOT recordings during two different breathing manoeuvres (both pre and post bronchodilator). The correlation and agreement between surrogate closing volume (Volcrit) and reactance (Xrscrit) at this volume was analysed. The changes in Volcrit and Xrscrit pre and post bronchodilator were also analysed. Across all three subject groups, the two different measures of Volcrit were shown to be statistically equivalent (p > 0.05) and demonstrated a strong fit to the data (R2 = 0.49, 0.78, 0.59, for asthmatic, COPD and healthy subject groups, respectively). A bias was evident between the two measurements of Xrscrit with statistically different means (p < 0.05). However, the two measurements of Xrscrit displayed the same trends. In conclusion, we have developed an alternative technique for measuring airway closure from FOT recordings. The technique delivers equivalent and possibly more sensitive results to previous methods while being simple and easily performed by the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACQ6:

Asthma control questionnaire-6

COPD:

Chronic obstructive pulmonary disease

FEV1 :

Forced expiratory volume in 1 s

FOT:

Forced oscillation technique

FVC:

Forced vital capacity

RV:

Residual volume

SVC:

Slow vital capacity

TLC:

Total lung capacity

Volcrit :

Critical volume

Xrs:

Reactance

Xrscrit :

Critical reactance

References

  • Anthonisen NR, Danson J, Robertson PC, Ross WR (1970) Airway closure as a function of age. Respir Physiol 8:58–65

    Article  Google Scholar 

  • Barnas GM, Yoshino K, Loring SH, Mead J (1987) Impedance and relative displacements of relaxed chest wall up to 4 Hz. J Appl Physiol (Bethesda, Md: 1985) 62(1):71–81

    Article  CAS  Google Scholar 

  • Bates JHT, Irvin CG (2002) Time dependence of recruitment and derecruitment in the lung: a theoretical model. J Appl Physiol 93(2):705

    Article  PubMed  Google Scholar 

  • Bates JHT, Irvin CG, Farré R, Hantos Z (2011) Oscillation mechanics of the respiratory system. Am Physiol Soc Compr Physiol 1(3):1234–1269

    Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  • Brown NJ, Salome CM, Berend N, Thorpe CW, King GG (2007) Airway distensibility in adults with asthma and healthy adults, measured by forced oscillation technique. Am J Respir Crit Care Med 176(2):129–137. https://doi.org/10.1164/rccm.200609-1317OC

    Article  PubMed  Google Scholar 

  • Cheng W, DeLong DS, Franz GN, Petsonk EL, Frazer DG (1995) Contribution of opening and closing of lung units to lung hysteresis. Respir Physiol 102:205–215

    Article  CAS  PubMed  Google Scholar 

  • Crapo RO, Morris AH, Clayton PD, Nixon CR (1982) Lung volumes in healthy nonsmoking adults. Bull Eur Physiopathol Respir 18(3):419–425

    CAS  PubMed  Google Scholar 

  • Crawford AB, Cotton DJ, Paiva M, Engel LA (1989) Effect of airway closure on ventilation distribution. J Appl Physiol 66(6):2511–2515

    Article  CAS  PubMed  Google Scholar 

  • de Lange EE, Altes TA, Patrie JT, Gaare JD, Knake JJ, Mugler JP III, Platts-Mills TA (2006a) Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest 130:1055–1062

    Article  PubMed  Google Scholar 

  • de Lange EE, Altes TA, Patrie JT, Gaare JD, Knake JJ, Mugler JP III, Platts-Mills TA (2006b) Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest 130(4):1055–1062. https://doi.org/10.1378/chest.130.4.1055

    Article  PubMed  Google Scholar 

  • Dechman G, Lauzon Am, Bates JH (1994) Mechanical behaviour of the canine respiratory system at very low lung volumes. Respir Physiol 95:119–129

    Article  CAS  PubMed  Google Scholar 

  • Dellaca RL, Santus P, Aliverti A, Stevenson N, Centanni S, Macklem PT, Pedotti A, Calverley PM (2004) Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J 23(2):232–240

    Article  CAS  PubMed  Google Scholar 

  • Dellaca RL, Rotger M, Aliverti A, Navajas D, Pedotti A, Farre R (2006) Noninvasive detection of expiratory flow limitation in COPD patients during nasal CPAP. Eur Respir J 27(5):983–991. https://doi.org/10.1183/09031936.06.00080005

    Article  CAS  PubMed  Google Scholar 

  • Dellaca RL, Duffy N, Pompilio PP, Aliverti A, Koulouris NG, Pedotti A, Calverley PM (2007) Expiratory flow limitation detected by forced oscillation and negative expiratory pressure. Eur Respir J 29(2):363–374. https://doi.org/10.1183/09031936.00038006

    Article  CAS  PubMed  Google Scholar 

  • Dellaca RL, Olerud MA, Zannin E, Kostic P, Pompilio PP, Hedenstierna G, Pedotti A, Frykholm P (2009) Lung recruitment assessed by total respiratory system input reactance. Intensive Care Med 35(12):2164–2172. https://doi.org/10.1007/s00134-009-1673-3

    Article  PubMed  Google Scholar 

  • Dollfuss R, Milic-Emili J, Bates D (1967) Regional ventilation of the lung studied with boluses of 133 Xenon. Respir Physiol 2:234–246

    Article  Google Scholar 

  • Downie SR, Salome CM, Verbanck S, Thompson BR, Berend N, King GG (2013) Effect of methacholine on peripheral lung mechanics and ventilation heterogeneity in asthma. J Appl Physiol (Bethesda Md 1985) 114(6):770–777. https://doi.org/10.1152/japplphysiol.01198.2012

    Article  CAS  Google Scholar 

  • Frazer DG, Franz GN (1981) Trapped gas and lung hysteresis. Respir Physiol 46:237–246

    Article  CAS  PubMed  Google Scholar 

  • Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67(6):2408–2419

    Article  CAS  PubMed  Google Scholar 

  • Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231

    Article  Google Scholar 

  • Gaver DP, Samsel RW, Solway J (1990) Effects of surface tension and viscosity on airway reopening. J Appl Physiol 69(1):74

    Article  PubMed  Google Scholar 

  • Gustafsson F (1996) Determining the initial states in forward-backward filtering. IEEE Trans Signal Process 44(4):988–992. https://doi.org/10.1109/78.492552

    Article  Google Scholar 

  • Hankinson JL, Odencrantz JR, Fedan KB (1999) Spirometric reference values from a sample of the general US. population. Am J Respir Crit Care Med 159(1):179–187

    Article  CAS  PubMed  Google Scholar 

  • Hedenstierna G, Rothen HU (2012) Respiratory function during anesthesia: effects on gas exchange. Compr Physiol 2(2040–4603):69–96

    PubMed  Google Scholar 

  • Hogg JC, Macklem PT, Thurlbeck WM (1968) Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med 278(25):1355–1360

    Article  CAS  PubMed  Google Scholar 

  • Hohlfeld JM, Ahlf K, Enhorning G, Balke K, Erpenbeck VJ, Petschallies J, Hoymann HG, Fabel H, Krug N (1999) Dysfunction of pulmonary surfactant in asthmatics after segmental allergen challenge. Am J Respir Crit Care Med 159:1803–1809

    Article  CAS  PubMed  Google Scholar 

  • Hughes JM, Rosenzweig DY, Kivitz PB (1970) Site of airway closure in excised dog lungs: histologic demonstration. J Appl Physiol 29:340–344

    Article  CAS  PubMed  Google Scholar 

  • Irvin CG, Bates JHT (2009) Physiologic dysfunction of the asthmatic lung: what’s going on down there, anyway? Proc Am Thorac Soc 6(3):306–311. https://doi.org/10.1513/pats.200808-091RM

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaczka DW et al (1997) Partitioning airway and lung tissue resistances in humans: effects of bronchoconstriction. J Appl Physiol 82(5):1531–1541

    Article  CAS  PubMed  Google Scholar 

  • Kaczka DW, Ingenito ED, Israel E, Lutchen KR (1999) Airway and lung tissue mechanics in asthma. Effects of albuterol. Am J Resp Crit Care Med 159:169–178

    Article  CAS  PubMed  Google Scholar 

  • Kaczka DW, Hager DN, Hawley ML, Simon BA (2005) Quantifying mechanical heterogeneity in canine acute lung injury: impact of mean airway pressure. Anesthesiology 103(2):306–317

    Article  PubMed  Google Scholar 

  • Kelly VJ, Brown NJ, Sands SA, Borg BM, King GG, Thompson BR (2012) The effect of airway smooth muscle tone on airway distensibility measured by the forced oscillation technique in adults with asthma. J Appl Physiol 112:1494–1503

    Article  PubMed  Google Scholar 

  • Kelly VJ, Sands SA, Harris RS, Venegas JG, Brown NJ, Stuart-Andrews CR, King GG, Thompson BR (2013) Respiratory system reactance is an independent determinant of asthma control. J Appl Physiol (Bethesda, Md: 1985) 115(9):1360–1369. https://doi.org/10.1152/japplphysiol.00093.2013

    Article  CAS  Google Scholar 

  • Leblanc P, Ruff F, Milic-Emili J (1970) Effects of age and body posture on ‘airway closure’ in man. J Appl Physiol 28(4):448–451

    Article  CAS  PubMed  Google Scholar 

  • Lutchen KR, Gillis H (1997) Relationship between heterogeneous changes in airway morphometry and lung resistance and elastance. J Appl Physiol 83(4):1192–1291

    Article  CAS  PubMed  Google Scholar 

  • Lutchen KR, Jensen A, Atileh H, Kaczka DW, Israel E, Suki B, Ingenito EP (2001) Airway constriction pattern is a central component of asthma severity: the role of deep inspirations. Am J Respir Crit Care Med 164:207–215

    Article  CAS  PubMed  Google Scholar 

  • Marchal F, Loos N, Monin P, Peslin R (1999) Methacholine-induced volume dependence of respiratory resistance in preschool children. Eur Respir J 14(5):1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Martin-Lefevre L, Ricard JD, Roupie E, Dreyfuss D, Saumon G (2001) Significance of the changes in the respiratory system pressure–volume curve during acute lung injury in rats. Am J Respir Crit Care Med 164:627–632

    Article  CAS  PubMed  Google Scholar 

  • Michaelson ED, Grassman ED, Peters WR (1975) Pulmonary mechanics by spectral analysis of forced random noise. J Clin Investig 56(5):1210–1230

    Article  CAS  PubMed  Google Scholar 

  • Milic-Emili J (2004) Does mechanical injury of the peripheral airways play a role in the genesis of COPD in smokers? COPD 1(1):85–92. https://doi.org/10.1081/COPD-120028700

    Article  PubMed  Google Scholar 

  • Milic-Emili J, Henderson JA, Dolovich MB, Trop D, Kaneko K (1966) Regional distribution of inspired gas in the lung. J Appl Physiol 21:749–759

    Article  CAS  PubMed  Google Scholar 

  • Milic-Emili J, Torchio R, D’Angelo E (2007) Closing volume: a reappraisal (1967–2007). Eur J Appl Physiol 99(6):567–583. https://doi.org/10.1007/s00421-006-0389-0

    Article  PubMed  Google Scholar 

  • Miller MR, Hankinson JATS, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CPM, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Pellegrino R, Viegi G, Wanger J (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    Article  CAS  Google Scholar 

  • Miravitlles M, Vogelmeier C, Roche N, Halpin D, Cardoso J, Chuchalin AG, Kankaanranta H, Sandström T, Śliwiński P, Zatloukal J, Blasi F (2016) A review of national guidelines for management of COPD in Europe. Eur Respir J 47(2):625–637. https://doi.org/10.1183/13993003.01170-2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Asthma Education and Prevention Program, National Heart, Lung, and Blood Institute. Expert Panel Report 3 (EPR3): Guidelines for the Diagnosis and Management of Asthma (2007) National Institutes of Health Publication No. 08-4051. http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.htm. Accessed Jan 2011

  • O’Donnell R, Peebles C, Ward J, Daraker A, Angco G, Broberg P, Pierrou S, Lund J, Holgate S, Davies D, Delany D, Wilson S, Djukanovic R (2004) Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD. Thorax 59(10):837–842. https://doi.org/10.1136/thx.2003.019349

    Article  PubMed  PubMed Central  Google Scholar 

  • Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing, 2nd edn. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  • Osborne S, Hogg JC, Wright JL, Coppin C, Pare PD (1988) Exponential analysis of the pressure-volume curve. Correlation with mean linear intercept and emphysema in human lungs. Am Rev Respir Dis 137(5):1083–1088. https://doi.org/10.1164/ajrccm/137.5.1083

    Article  CAS  PubMed  Google Scholar 

  • Otis DR, Petak F, Hantos Z, Fredberg JJ, Kamm RD (1996) Airway closure and reopening assessed by the alveolar capsule oscillation technique. J Appl Physiol 80(6):2077

    Article  PubMed  Google Scholar 

  • Peslin R, Farre R, Rotger M, Navajas D (1996) Effect of expiratory flow limitation on respiratory mechanical impedance: a model study. J Appl Physiol (Bethesda, Md: 1985) 81(6):2399–2406

    Article  CAS  Google Scholar 

  • Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27:1946–1952

    Article  CAS  PubMed  Google Scholar 

  • Salome C, Thorpe C, Diba C, Brown N, Berend N, King G (2003) Airway re-narrowing following deep inspiration in asthmatic and nonasthmatic subjects. Eur Respir J 22:62–68

    Article  CAS  PubMed  Google Scholar 

  • Samee S, Altes T, Powers P, de Lange EE, Knight-Scott J, Rakes G, Mugler JP III, Ciambotti JM, Alford BA, Brookeman JR, Platts-Mills TA (2003) Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: assessment of response to methacholine and exercise challenge. J Allergy Clin Immunol 111:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Standardization of spirometry–1987 update (1987) Statement of the American Thoracic Society. The American review of respiratory disease. Eur Respir J 136 (5):1285–1298

    Google Scholar 

  • Stuart-Andrews CR, Kelly VJ, Sands SA, Lewis AJ, Ellis MJ, Thompson BR (2012) Automated detection of the phase III slope during inert gas washout testing. J Appl Physiol 112(6):1073–1081

    Article  PubMed  Google Scholar 

  • Vassiliou M, Peslin R, Saunier C, Duvivier C (1996) Expiratory flow limitation during mechanical ventilation detected by the forced oscillation method. Eur Respir J 9(4):779

    Article  CAS  PubMed  Google Scholar 

  • Veen JCIT, Beekman AJ, Bel EH, Sterk PJ (2000) Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med 161(6):1902–1906. https://doi.org/10.1164/ajrccm.161.6.9906075

    Article  Google Scholar 

  • Wagner EM, Bleecker ER, Permutt S, Liu MC (1998) Direct assessment of small airways reactivity in human subjects. Am J Respir Crit Care Med 157:447–452

    Article  CAS  PubMed  Google Scholar 

  • Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CPM, Gustafsson P, Hankinson J, Jensen R, Johnson D, Macintyre N, McKay R, Miller MR, Navajas D, Pellegrino R, Viegi G (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26:511–522

    Article  CAS  PubMed  Google Scholar 

  • Williams JV, Tierney DF, Parker HR (1966) Surface forces in the lung, atelectasis, and transpulmonary pressure. J Appl Physiol 21(3):819

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Gerald Kerkut Charitable Trust for part funding co author’s (KG) studentship. We would like to acknowledge Prof Peter Howarth for funding Southampton’s Tremoflo equipment.

Author information

Authors and Affiliations

Authors

Contributions

KN: Study design, data collection, analysis of results, writing of manuscript. KG: Study design, data collection, analysis of results, writing of manuscript. FT: Study design, and writing of manuscript. TW: Study design, and writing of manuscript. BRT: Study design, analysis of results, writing of manuscript.

Corresponding author

Correspondence to K. Nilsen.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Susan Hopkins.

This study demonstrates a new and improved technique for identifying closing volume via FOT measurements. The technique delivers equivalent and possibly more sensitive results to previous methods while being simple and easy to perform for the patient.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilsen, K., Gove, K., Thien, F. et al. Comparison of two methods of determining lung de-recruitment, using the forced oscillation technique. Eur J Appl Physiol 118, 2213–2224 (2018). https://doi.org/10.1007/s00421-018-3949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3949-1

Keywords

Navigation