Skip to main content

Advertisement

Log in

Indexes of cerebral autoregulation do not reflect impairment in syncope: insights from head-up tilt test of vasovagal and autonomic failure subjects

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The study of dynamic cerebral autoregulation (CA), which adapts cerebral blood flow to arterial blood pressure (ABP) fluctuations, has been limited in orthostatic intolerance syndromes, mainly due to its stationary prerequisites hardly to meet during maneuvers to provoke syncope itself. New techniques of continuous estimates of CA could overcome this pitfall. We aimed to evaluate CA during head-up tilt test in common conditions causing syncope.

Methods

We compared three groups: eight controls; eight patients with autonomic failure due to familial amyloidotic polyneuropathy; eight patients with vasovagal syncope (VVS). ABP and cerebral blood flow velocity (CBFV) were measured with Finometer® and transcranial Doppler. We calculated cerebrovascular resistance index (CVRi), critical closing pressure (CrCP) and resistance area product (RAP), and derived CA continuously from autoregulation index [ARI(t)].

Results

With HUTT, AF subjects showed a pronounced decrease in CBFV (−36 ± 17 versus −7 ± 6%, p < 0.0001), ABP (−29 ± 27 versus 7 ± 12%, p < 0.0001) and RAP (−17 ± 23 versus 3 ± 18%, p < 0.0001) but not CVRi (p = 0.110). VVS subjects showed progressive cerebral vasoconstriction prior to syncope, (reduced CBFV 19 ± 15 versus 1 ± 6, p < 0.000; increased RAP 12 ± 18 versus 2 ± 3%, p = 0.024 and CVRi 12 ± 18 versus 2 ± 3%, p = 0.005). ARI(t) increased significantly in AF patients (5.7 ± 1.2 versus 6.9 ± 1.2, p = 0.040) and VVS (5.8 ± 1.2 versus 7.3 ± 1.2, p = 0.015) in response to ABP fall during syncope.

Conclusions

Our data suggest that dynamic cerebral autoregulatory response to orthostatic challenge is neither affected by autonomic dysfunction nor in neutrally mediated syncope. This study also emphasizes that RAP + CrCP model is more informative than CVRi, mainly during cerebral vasodilatory response to orthostatic hypotension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CA:

Cerebral autoregulation

CBFV:

Cerebral blood flow velocity

MCA:

Middle cerebral artery

CrCP:

Critical closing pressure

RAP:

Resistance area product

CVRi:

Cerebrovascular resistance index

ARI:

Autoregulation index

ARI(t):

Time-varying autoregulation index

AF:

Autonomic failure

VVS:

Vasovagal syncope

ARMA:

Autoregressive moving-average

ANOVA:

Analysis of variance

HUTT:

Head-up tilt test

VLF:

Very low frequency

LF:

Low frequency

HF:

High frequency

ABP:

Arterial blood pressure

HR:

Heart rate

CO2 :

Carbon dioxide

References

  • Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20(1):45–52

    Article  CAS  Google Scholar 

  • Aaslid R, Lash SR, Bardy GH, Gild WH, Newell DW (2003) Dynamic pressure–flow velocity relationships in the human cerebral circulation. Stroke 34(7):1645–1649. doi:10.1161/01.STR.0000077927.63758.B6

    Article  PubMed  Google Scholar 

  • Azevedo E, Castro P, Santos R, Freitas J, Coelho T, Rosengarten B, Panerai R (2011) Autonomic dysfunction affects cerebral neurovascular coupling. Clin Auton Res 21(6):395–403. doi:10.1007/s10286-011-0129-3

    Article  PubMed  Google Scholar 

  • Blaber AP, Bondar RL, Stein F, Dunphy PT, Moradshahi P, Kassam MS, Freeman R (1997) Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients. Stroke 28(9):1686–1692

    Article  CAS  Google Scholar 

  • Bondar RL, Dunphy PT, Moradshahi P, Kassam MS, Blaber AP, Stein F, Freeman R (1997) Cerebrovascular and cardiovascular responses to graded tilt in patients with autonomic failure. Stroke 28(9):1677–1685

    Article  CAS  Google Scholar 

  • Brooks DJ, Redmond S, Mathias CJ, Bannister R, Symon L (1989) The effect of orthostatic hypotension on cerebral blood flow and middle cerebral artery velocity in autonomic failure, with observations on the action of ephedrine. J Neurol Neurosurg Psychiatry 52(8):962–966

    Article  CAS  Google Scholar 

  • Carey BJ, Eames PJ, Panerai RB, Potter JF (2001a) Carbon dioxide, critical closing pressure and cerebral haemodynamics prior to vasovagal syncope in humans. Clin Sci (Lond) 101(4):351–358

    Article  CAS  Google Scholar 

  • Carey BJ, Manktelow BN, Panerai RB, Potter JF (2001b) Cerebral autoregulatory responses to head-up tilt in normal subjects and patients with recurrent vasovagal syncope. Circulation 104(8):898–902

    Article  CAS  Google Scholar 

  • Carvalho MJ, van Den Meiracker AH, Boomsma F, Lima M, Freitas J, Veld AJ, Falcao De Freitas A (2000) Diurnal blood pressure variation in progressive autonomic failure. Hypertension 35(4):892–897

    Article  CAS  Google Scholar 

  • Cassaglia PA, Griffiths RI, Walker AM (2009) Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep. J Appl Physiol 106(4):1050–1056. doi:10.1152/japplphysiol.91349.2008

    Article  CAS  PubMed  Google Scholar 

  • Castro P, Santos R, Freitas J, Rosengarten B, Panerai R, Azevedo E (2012) Adaptation of cerebral pressure-velocity hemodynamic changes of neurovascular coupling to orthostatic challenge. Perspect Med. doi:10.1016/j.permed.2012.1002.1052 (Available online 1028 March 2012)

    Article  Google Scholar 

  • Castro PM, Santos R, Freitas J, Panerai RB, Azevedo E (2014) Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects. J Appl Physiol 117(3):205–213. doi:10.1152/japplphysiol.00893.2013

    Article  PubMed  Google Scholar 

  • Claassen JA, Meel-van den Abeelen AS, Simpson DM, Panerai RB, International Cerebral Autoregulation Research N (2016) Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network. J Cereb Blood Flow Metab. doi:10.1177/0271678X15626425

    Article  PubMed  PubMed Central  Google Scholar 

  • Claydon VE, Hainsworth R (2003) Cerebral autoregulation during orthostatic stress in healthy controls and in patients with posturally related syncope. Clin Auton Res 13(5):321–329. doi:10.1007/s10286-003-0120-8

    Article  PubMed  Google Scholar 

  • Dan D, Hoag JB, Ellenbogen KA, Wood MA, Eckberg DL, Gilligan DM (2002) Cerebral blood flow velocity declines before arterial pressure in patients with orthostatic vasovagal presyncope. J Am Coll Cardiol 39(6):1039–1045

    Article  Google Scholar 

  • Dawson SL, Panerai RB, Potter JF (1999) Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver. J Appl Physiol 86(2):675–680

    Article  CAS  Google Scholar 

  • Diehl RR, Linden D, Chalkiadaki A, Diehl A (1999) Cerebrovascular mechanisms in neurocardiogenic syncope with and without postural tachycardia syndrome. J Auton Nerv Syst 76(2–3):159–166

    Article  CAS  Google Scholar 

  • Dineen NE, Brodie FG, Robinson TG, Panerai RB (2010) Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia. J Appl Physiol 108(3):604–613. doi:10.1152/japplphysiol.01157.2009

    Article  CAS  PubMed  Google Scholar 

  • Freeman R (2006) Assessment of cardiovascular autonomic function. Clin Neurophysiol 117(4):716–730. doi:10.1016/j.clinph.2005.09.027

    Article  PubMed  Google Scholar 

  • Freitas J, Santos R, Azevedo E, Carvalho M, Boomsma F, Meiracker A, Falcao de Freitas A, Abreu-Lima C (2007) Hemodynamic, autonomic and neurohormonal behaviour of familial amyloidotic polyneuropathy and neurally mediated syncope patients during supine and orthostatic stress. Int J Cardiol 116(2):242–248. doi:10.1016/j.ijcard.2006.03.052

    Article  CAS  PubMed  Google Scholar 

  • Giller CA, Mueller M (2003) Linearity and non-linearity in cerebral hemodynamics. Med Eng Phys 25(8):633–646

    Article  Google Scholar 

  • Goldstein DS, Holmes C, Frank SM, Naqibuddin M, Dendi R, Snader S, Calkins H (2003) Sympathoadrenal imbalance before neurocardiogenic syncope. Am J Cardiol 91(1):53–58

    Article  Google Scholar 

  • Greenfield JC Jr, Rembert JC, Tindall GT (1984) Transient changes in cerebral vascular resistance during the Valsalva maneuver in man. Stroke 15(1):76–79

    Article  Google Scholar 

  • Hansen JM, Pedersen D, Larsen VA, Sanchez-del-Rio M, Alvarez Linera JR, Olesen J, Ashina M (2007) Magnetic resonance angiography shows dilatation of the middle cerebral artery after infusion of glyceryl trinitrate in healthy volunteers. Cephalalgia Int J Headache 27(2):118–127. doi:10.1111/j.1468-2982.2006.01257.x

    Article  CAS  Google Scholar 

  • Harrison JM, Girling KJ, Mahajan RP (2002) Effects of propofol and nitrous oxide on middle cerebral artery flow velocity and cerebral autoregulation. Anaesthesia 57(1):27–32

    Article  CAS  Google Scholar 

  • Hilz MJ, Axelrod FB, Steingrueber M, Stemper B (2002) Valsalva maneuver suggests increased rigidity of cerebral resistance vessels in familial dysautonomia. Clin Auton Res 12(5):385–392. doi:10.1007/s10286-002-0027-9

    Article  CAS  PubMed  Google Scholar 

  • Horowitz DR, Kaufmann H (2001) Autoregulatory cerebral vasodilation occurs during orthostatic hypotension in patients with primary autonomic failure. Clin Auton Res 11(6):363–367

    Article  CAS  Google Scholar 

  • Lagi A, Cencetti S, Corsoni V, Georgiadis D, Bacalli S (2001) Cerebral vasoconstriction in vasovagal syncope: any link with symptoms? A transcranial Doppler study. Circulation 104(22):2694–2698

    Article  CAS  Google Scholar 

  • Latka M, Turalska M, Glaubic-Latka M, Kolodziej W, Latka D, West BJ (2005) Phase dynamics in cerebral autoregulation. Am J Physiol Heart Circ Physiol 289(5):H2272–H2279. doi:10.1152/ajpheart.01307.2004

    Article  CAS  PubMed  Google Scholar 

  • Maggio P, Salinet AS, Panerai RB, Robinson TG (2013) Does hypercapnia-induced impairment of cerebral autoregulation affect neurovascular coupling? A functional TCD study. J Appl Physiol 115(4):491–497. doi:10.1152/japplphysiol.00327.2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Marmarelis V, Shin D, Zhang R (2012) Linear and nonlinear modeling of cerebral flow autoregulation using principal dynamic modes. Open Biomed Eng J 6:42–55. doi:10.2174/1874230001206010042

    Article  PubMed  PubMed Central  Google Scholar 

  • Meel-van den Abeelen AS, van Beek AH, Slump CH, Panerai RB, Claassen JA (2014) Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow. Med Eng Phys 36(5):563–575. doi:10.1016/j.medengphy.2014.02.001

    Article  PubMed  Google Scholar 

  • Michishita R, Ohta M, Ikeda M, Jiang Y, Yamato H (2016) An exaggerated blood pressure response to exercise is associated with nitric oxide bioavailability and inflammatory markers in normotensive females. Hypertens Res Off J Jpn Soc Hypertens 39(11):792–798. doi:10.1038/hr.2016.75

    Article  CAS  Google Scholar 

  • Mitsis GD, Poulin MJ, Robbins PA, Marmarelis VZ (2004) Nonlinear modeling of the dynamic effects of arterial pressure and CO2 variations on cerebral blood flow in healthy humans. IEEE Trans Biomed Eng 51(11):1932–1943. doi:10.1109/TBME.2004.834272

    Article  PubMed  Google Scholar 

  • Mitsis GD, Zhang R, Levine BD, Marmarelis VZ (2006) Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling. J Appl Physiol 101(1):354–366. doi:10.1152/japplphysiol.00548.2005

    Article  PubMed  Google Scholar 

  • Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR (1994) Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke 25(4):793–797

    Article  CAS  Google Scholar 

  • Novak V, Novak P, Spies JM, Low PA (1998) Autoregulation of cerebral blood flow in orthostatic hypotension. Stroke 29(1):104–111

    Article  CAS  Google Scholar 

  • Novak V, Yang AC, Lepicovsky L, Goldberger AL, Lipsitz LA, Peng CK (2004) Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension. Biomed Eng Online 3(1):39. doi:10.1186/1475-925X-3-39

    Article  PubMed  PubMed Central  Google Scholar 

  • Ocon AJ, Kulesa J, Clarke D, Taneja I, Medow MS, Stewart JM (2009) Increased phase synchronization and decreased cerebral autoregulation during fainting in the young. Am J Physiol Heart Circ Physiol 297(6):H2084–H2095. doi:10.1152/ajpheart.00705.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panerai RB (2003) The critical closing pressure of the cerebral circulation. Med Eng Phys 25(8):621–632

    Article  CAS  Google Scholar 

  • Panerai RB (2008) Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng 8(1):42–59. doi:10.1007/s10558-007-9044-6

    Article  PubMed  Google Scholar 

  • Panerai RB, Moody M, Eames PJ, Potter JF (2005) Cerebral blood flow velocity during mental activation: interpretation with different models of the passive pressure–velocity relationship. J Appl Physiol 99(6):2352–2362. doi:10.1152/japplphysiol.00631.2005

    Article  PubMed  Google Scholar 

  • Panerai RB, Sammons EL, Smith SM, Rathbone WE, Bentley S, Potter JF, Samani NJ (2008) Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements. Physiol Meas 29(4):497–513. doi:10.1088/0967-3334/29/4/006

    Article  CAS  PubMed  Google Scholar 

  • Panerai RB, Dineen NE, Brodie FG, Robinson TG (2010) Spontaneous fluctuations in cerebral blood flow regulation: contribution of PaCO2. J Appl Physiol 109(6):1860–1868. doi:10.1152/japplphysiol.00857.2010

    Article  CAS  PubMed  Google Scholar 

  • Panerai RB, Eyre M, Potter JF (2012) Multivariate modelling of cognitive-motor stimulation on neurovascular coupling: transcranial Doppler used to characterize myogenic and metabolic influences. Am J Physiol Regul Integr Comp Physiol. doi:10.1152/ajpregu.00161.2012

    Article  PubMed  Google Scholar 

  • Panerai RB, Saeed NP, Robinson TG (2015) Cerebrovascular effects of the thigh cuff maneuver. Am J Physiol Heart Circ Physiol 308(7):H688–H696. doi:10.1152/ajpheart.00887.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panerai RB, Haunton VJ, Hanby MF, Salinet AS, Robinson TG (2016) Statistical criteria for estimation of the cerebral autoregulation index (ARI) at rest. Physiol Meas 37(5):661–672. doi:10.1088/0967-3334/37/5/661

    Article  CAS  PubMed  Google Scholar 

  • Pott F, van Lieshout JJ, Ide K, Madsen P, Secher NH (2000) Middle cerebral artery blood velocity during a valsalva maneuver in the standing position. J Appl Physiol 88(5):1545–1550

    Article  CAS  Google Scholar 

  • Rowley AB, Payne SJ, Tachtsidis I, Ebden MJ, Whiteley JP, Gavaghan DJ, Tarassenko L, Smith M, Elwell CE, Delpy DT (2007) Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation. Physiol Meas 28(2):161–173. doi:10.1088/0967-3334/28/2/005

    Article  CAS  PubMed  Google Scholar 

  • Salinet AS, Robinson TG, Panerai RB (2013) Active, passive, and motor imagery paradigms: component analysis to assess neurovascular coupling. J Appl Physiol 114(10):1406–1412. doi:10.1152/japplphysiol.01448.2012

    Article  CAS  PubMed  Google Scholar 

  • Schondorf R, Benoit J, Wein T (1997) Cerebrovascular and cardiovascular measurements during neurally mediated syncope induced by head-up tilt. Stroke 28(8):1564–1568

    Article  CAS  Google Scholar 

  • Schondorf R, Benoit J, Stein R (2001a) Cerebral autoregulation in orthostatic intolerance. Ann N Y Acad Sci 940:514–526

    Article  CAS  Google Scholar 

  • Schondorf R, Stein R, Roberts R, Benoit J, Cupples W (2001b) Dynamic cerebral autoregulation is preserved in neurally mediated syncope. J Appl Physiol 91(6):2493–2502

    Article  CAS  Google Scholar 

  • Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31(7):1672–1678

    Article  CAS  Google Scholar 

  • Stewart JM, Medow MS, DelPozzi A, Messer ZR, Terilli C, Schwartz CE (2013) Middle cerebral O2 delivery during the modified Oxford maneuver increases with sodium nitroprusside and decreases during phenylephrine. Am J Physiol Heart Circ Physiol 304(11):H1576–H1583. doi:10.1152/ajpheart.00114.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabara Y, Nakura J, Kondo I, Miki T, Kohara K (2005) Orthostatic systolic hypotension and the reflection pressure wave. Hypertens Res Off J Jpn Soc Hypertens 28(6):537–543. doi:10.1291/hypres.28.537

    Article  Google Scholar 

  • Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26(6):1014–1019

    Article  CAS  Google Scholar 

  • Van Lieshout JJ, Wieling W, Karemaker JM, Secher NH (2003) Syncope, cerebral perfusion, and oxygenation. J Appl Physiol 94(3):833–848. doi:10.1152/japplphysiol.00260.2002

    Article  PubMed  Google Scholar 

  • Vokatch N, Grotzsch H, Mermillod B, Burkhard PR, Sztajzel R (2007) Is cerebral autoregulation impaired in Parkinson’s disease? A transcranial Doppler study. J Neurol Sci 254(1–2):49–53. doi:10.1016/j.jns.2006.12.017

    Article  CAS  PubMed  Google Scholar 

  • Wallasch TM, Kropp P (2012) Cerebrovascular response to valsalva maneuver: methodology, normal values, and retest reliability. J Clin Ultrasound JCU 40(9):540–546. doi:10.1002/jcu.21936

    Article  PubMed  Google Scholar 

  • Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, Ikeda K, Graham J, Lewis NC, Day TA, Ainslie PN (2012) Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol 590(14):3261–3275. doi:10.1113/jphysiol.2012.228551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Levine BD (2007) Autonomic ganglionic blockade does not prevent reduction in cerebral blood flow velocity during orthostasis in humans. Stroke 38(4):1238–1244. doi:10.1161/01.STR.0000260095.94175.d0

    Article  PubMed  Google Scholar 

  • Zhang R, Zuckerman JH, Giller CA, Levine BD (1998) Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol 274(1 Pt 2):H233–H241

    CAS  PubMed  Google Scholar 

  • Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106(14):1814–1820

    Article  Google Scholar 

  • Zhang R, Crandall CG, Levine BD (2004) Cerebral hemodynamics during the Valsalva maneuver: insights from ganglionic blockade. Stroke 35(4):843–847. doi:10.1161/01.STR.0000120309.84666.AE

    Article  CAS  PubMed  Google Scholar 

  • Zuj KA, Arbeille P, Shoemaker JK, Blaber AP, Greaves DK, Xu D, Hughson RL (2012) Impaired cerebrovascular autoregulation and reduced CO(2) reactivity after long duration spaceflight. Am J Physiol Heart Circ Physiol 302(12):H2592–H2598. doi:10.1152/ajpheart.00029.2012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PC: (1) Analyzed data; (2) Interpreted results of experiments; (3) Prepared figures; (4) Drafted manuscript; (5) Edited and revised manuscript; (6) Approved final version of manuscript. JF: (1) Conception and design of research; (2) Performed experiments (3) Edited and revised manuscript; (3) Approved final version of manuscript. RS: (1) Performed experiments; (2) Approved final version of manuscript. RP: (1) Designed software; (2) Analyzed data; (3) Interpreted results of experiments; (4) revised manuscript; (5) Approved final version of manuscript. EA: (1) Conception and design of research; (2) Interpreted results of experiments; (3) Edited and revised manuscript; (4) Approved final version of manuscript

Corresponding author

Correspondence to Pedro Castro.

Ethics declarations

Conflict of interest

The authors report no disclosures.

Additional information

Communicated by Massimo Pagani.

Appendix

Appendix

Critical closing pressure and resistance area product calculations

After the first harmonic is derived from ABP (P1) and CBFV (V1) for each cardiac cycle, the resistance area product (RAP) can be calculated as:

$${\text{RAP}} = \frac{{{\text{P}}1}}{{{\text{V}}1}}.$$
(1)

And the critical closing pressure (CrCP) can then be obtained as:

$${\text{CrCP}} = {\text{MAP}} - V_{\text{mean}} \cdot {\text{RAP,}}$$
(2)

where MAP is the mean ABP for the cardiac cycle and V mean the corresponding mean CBFV.

Transfer function analysis

From beat-to-beat values of mean CBFV and mean ABP, we can obtain the corresponding auto-spectra, \(S_{xx}\) and \(S_{yy}\), with the fast Fourier transform, as well as the cross-spectra, \(S_{xy}\), with the Welch method (Claassen et al. 2016). We deduce the oscillatory influence of ABP over CBFV at a given frequency \(f\) by the transfer function \(H\):

$$H(f) = \frac{{S_{xy} (f)}}{{S_{xx} (f)}}.$$
(3)

From its real \(H_{\text{R}}\) and imaginary parts \(H_{\text{I}}\) we can then derive:

$${\text{gain}},\quad \;\left| {H(f)} \right| = \sqrt {(\left| {H_{\text{R}} (f)} \right|^{2} + \left| {H_{\text{I}} (f)} \right|^{2} )} ,$$
(4)
$${\text{phase}},\;\quad \varphi = \tan^{ - 1} \left( {\frac{{H_{\text{I}} (f)}}{{H_{\text{R}} (f)}}} \right).$$
(5)

T To assess how much of the output (CBFV) power is explained by the corresponding input (ABP) power at each frequency, we calculate the coherence between spectra \((\gamma^{2} (f))\) by the formula:

$$\gamma^{2} = \frac{{\left| {S_{xy} (f)} \right|^{2} }}{{\left| {S_{xy} (f) \cdot S_{yy} (f)} \right|}}.$$
(6)

ARMA implementation of Tiecks’ model

The model proposed by Tiecks et al. (1995) uses a second-order differential equation to predict the velocity signal V(t) corresponding to a relative pressure change given by dP(t) by the formula:

$$V(t) = 1 + {\text{d}}P(t) - K \times x_{2} (t),$$
(7)

where K represents a gain parameter in the second-order differential equation, an x 2(t) is a state variable obtained from the following state equation system representing a second-order linear differential equation modeled by gain (K), time constant (T) and dampening factor (D). So, for a gives sampling frequency f and each sample discrete value n:

$$x2n = x2n - 1 - \frac{x1 - 2D \cdot x2n - 1}{f \cdot T},$$
(8)
$$x1n = x1n - 1 + \frac{{{\text{d}}Pn - x2n - 1}}{f \cdot T}.$$
(9)

In the original proposal of Tiecks et al. (1995), only 10 combinations of the parameters K, D, and T were considered, according to the values given in their Table 3, which also shows the corresponding value of ARI for each combination of these parameters.

The building of an ARMA model based on Tiecks’ model is extensively detailed in previous work (Dineen et al. 2010). For the sake of simplicity, we resume main formulas of the method here. Firstly we express the transfer function as Z-transforms, and then applying an inverse Z transform to derive:

$$v(n) = a \times p(n) + b\left[ {p(n - 1) - v(n - 1)} \right] + c[p(n - 2)v(n - 2)] ,$$
(10)

where p(n) and v(n) are discrete samples of V(t) and P(t), respectively.

Once the ARMA parameters have been estimated, the CBFV step response can be obtained from Eq. (10), and the ARI parameter can then be extracted by least squares fitting of the corresponding Tiecks et al. (1995) model responses using the first N fit samples of the ARMA step response.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, P., Freitas, J., Santos, R. et al. Indexes of cerebral autoregulation do not reflect impairment in syncope: insights from head-up tilt test of vasovagal and autonomic failure subjects. Eur J Appl Physiol 117, 1817–1831 (2017). https://doi.org/10.1007/s00421-017-3674-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3674-1

Keywords

Navigation