Skip to main content
Log in

Effects of 4 weeks of low-load unilateral resistance training, with and without blood flow restriction, on strength, thickness, V wave, and H reflex of the soleus muscle in men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To test the effects of 4 weeks of unilateral low-load resistance training (LLRT), with and without blood flow restriction (BFR), on maximal voluntary contraction (MVC), muscle thickness, volitional wave (V wave), and Hoffmann reflex (H reflex) of the soleus muscle.

Methods

Twenty-two males were randomly distributed into three groups: a control group (CTR; n = 8); a low-load blood flow restriction resistance training group (BFR-LLRT; n = 7), who were an inflatable cuff to occlude blood flow; and a low-load resistance training group without blood flow restriction (LLRT; n = 7). The training consisted of four sets of unilateral isometric LLRT (25% of MVC) three times a week over 4 weeks.

Results

MVC increased 33% (P < 0.001) and 22% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. The soleus thickness increased 9.5% (P < 0.001) and 6.5% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. However, neither MVC nor thickness changed in either of the legs tested in the CTR group (MVC −1 and −5%, and muscle thickness 1.9 and 1.2%, for the control and trained leg, respectively). Moreover, V wave and H reflex did not change significantly in all the groups studied (Vwave/M wave ratio −7.9 and −2.6%, and H max/M max ratio −3.8 and −4%, for the control and trained leg, respectively).

Conclusions

Collectively, the present data suggest that in spite of the changes occurring in soleus strength and thickness, 4 weeks of low-load resistance training, with or without BFR, does not cause any change in neural drive or motoneuronal excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BFR:

Blood flow restriction

BFR-LLRT:

Low-load blood flow restriction resistance training

CNS:

Central nervous system

CSA:

Cross-sectional area

CTR:

Control group

H reflex:

Hoffmann reflex

iEMG:

Integrated EMG

LLRT:

Low-load resistance training

MVC:

Maximal voluntary contraction

RM:

Repetition maximum

RM-ANOVA:

Repeated measures analysis of variance

SD:

Standard deviation

sEMG:

Surface electromyography

VA:

Voluntary activation

V wave:

Volitional wave

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol (1985) 92(6):2309–2318. doi:10.1152/japplphysiol.01185.2001

    Article  Google Scholar 

  • ACSM (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708. doi:10.1249/MSS.0b013e3181915670

    Article  Google Scholar 

  • Alegre LM, Aguado X, Rojas-Martin D, Martin-Garcia M, Ara I, Csapo R (2015) Load-controlled moderate and high-intensity resistance training programs provoke similar strength gains in young women. Muscle Nerve 51(1):92–101. doi:10.1002/mus.24271

    Article  PubMed  Google Scholar 

  • Allen GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18(6):593–600. doi:10.1002/mus.880180605

    Article  CAS  PubMed  Google Scholar 

  • Arabadzhiev TI, Dimitrov VG, Dimitrov GV (2014) The increase in surface EMG could be a misleading measure of neural adaptation during the early gains in strength. Eur J Appl Physiol 114(8):1645–1655. doi:10.1007/s00421-014-2893-y

    Article  PubMed  Google Scholar 

  • Aranyi Z, Rosler KM (2002) Effort-induced mirror movements. A study of transcallosal inhibition in humans. Exp Brain Res 145(1):76–82. doi:10.1007/s00221-002-1101-1

    Article  PubMed  Google Scholar 

  • Barcelos LC, Nunes PR, de Souza LR, de Oliveira AA, Furlanetto R, Marocolo M, Orsatti FL (2015) Low-load resistance training promotes muscular adaptation regardless of vascular occlusion, load, or volume. Eur J Appl Physiol 115(7):1559–1568. doi:10.1007/s00421-015-3141-9

    Article  PubMed  Google Scholar 

  • Brandner CR, Warmington SA, Kidgell DJ (2015) Corticomotor excitability is increased following an acute bout of blood flow restriction resistance exercise. Front Hum Neurosci 9:652. doi:10.3389/fnhum.2015.00652

    Article  PubMed  PubMed Central  Google Scholar 

  • Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5(8):e12033. doi:10.1371/journal.pone.0012033

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC (2006) Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol (1985) 101(5):1514–1522. doi:10.1152/japplphysiol.00531.2006

    Article  Google Scholar 

  • Chapman JP, Chapman LJ, Allen JJ (1987) The measurement of foot preference. Neuropsychologia 25(3):579–584

    Article  CAS  PubMed  Google Scholar 

  • Cherry-Allen KM, Gidday JM, Lee JM, Hershey T, Lang CE (2015) Remote limb ischemic conditioning enhances motor learning in healthy humans. J Neurophysiol 113(10):3708–3719. doi:10.1152/jn.01028.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow RS, Medri MK, Martin DC, Leekam RN, Agur AM, McKee NH (2000) Sonographic studies of human soleus and gastrocnemius muscle architecture: gender variability. Eur J Appl Physiol 82(3):236–244. doi:10.1007/s004210050677

    Article  CAS  PubMed  Google Scholar 

  • Cook SB, Murphy BG, Labarbera KE (2013) Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc 45(1):67–74. doi:10.1249/MSS.0b013e31826c6fa8

    Article  PubMed  Google Scholar 

  • Dankel SJ, Counts BR, Barnett BE, Buckner SL, Abe T, Loenneke JP (2016) Muscle adaptations following 21 consecutive days of strength test familiarization compared with traditional training. Muscle Nerve. doi:10.1002/mus.25488

    Article  Google Scholar 

  • Ekblom MM (2010) Improvements in dynamic plantar flexor strength after resistance training are associated with increased voluntary activation and V-to-M ratio. J Appl Physiol (1985) 109(1):19–26. doi:10.1152/japplphysiol.01307.2009

    Article  Google Scholar 

  • Farthing JP (2009) Cross-education of strength depends on limb dominance: implications for theory and application. Exerc Sport Sci Rev 37(4):179–187. doi:10.1097/JES.0b013e3181b7e882

    Article  PubMed  Google Scholar 

  • Farthing JP, Borowsky R, Chilibeck PD, Binsted G, Sarty GE (2007) Neuro-physiological adaptations associated with cross-education of strength. Brain Topogr 20(2):77–88. doi:10.1007/s10548-007-0033-2

    Article  PubMed  Google Scholar 

  • Farup J, de Paoli F, Bjerg K, Riis S, Ringgard S, Vissing K (2015) Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports. doi:10.1111/sms.12396

    Article  Google Scholar 

  • Fimland MS, Helgerud J, Solstad GM, Iversen VM, Leivseth G, Hoff J (2009) Neural adaptations underlying cross-education after unilateral strength training. Eur J Appl Physiol 107(6):723–730. doi:10.1007/s00421-009-1190-7

    Article  PubMed  Google Scholar 

  • Frost LR, Gerling ME, Markic JL, Brown SH (2012) Exploring the effect of repeated-day familiarization on the ability to generate reliable maximum voluntary muscle activation. J Electromyogr Kinesiol 22(6):886–892. doi:10.1016/j.jelekin.2012.05.005

    Article  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    Article  CAS  PubMed  Google Scholar 

  • Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol 429:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermens HJ, Commission des Communautés e, Biomedical, Health Research P (1999) SENIAM: European recommendations for surface electromyography: results of the SENIAM project. Roessingh Research and Development (Pays-Bas)

  • Holtermann A, Roeleveld K, Engstrom M, Sand T (2007) Enhanced H-reflex with resistance training is related to increased rate of force development. Eur J Appl Physiol 101(3):301–312. doi:10.1007/s00421-007-0503-y

    Article  PubMed  Google Scholar 

  • Hopf HC, Schlegel HJ, Lowitzsch K (1974) Irradiation of voluntary activity to the contralateral side in movements of normal subjects and patients with central motor disturbances. Eur Neurol 12(3):142–147

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi T (2005) Cross education and the human central nervous system. IEEE Eng Med Biol Mag 24(1):22–28

    Article  PubMed  Google Scholar 

  • Hortobagyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC (2003) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 90(4):2451–2459. doi:10.1152/jn.01001.2002

    Article  PubMed  Google Scholar 

  • Kamen G, Knight CA (2004) Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci 59(12):1334–1338

    Article  PubMed  Google Scholar 

  • Kawakami Y, Ichinose Y, Fukunaga T (1998) Architectural and functional features of human triceps surae muscles during contraction. J Appl Physiol (1985) 85(2):398–404

    Article  CAS  Google Scholar 

  • Kubo K, Komuro T, Ishiguro N, Tsunoda N, Sato Y, Ishii N, Kanehisa H, Fukunaga T (2006) Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech 22(2):112–119

    Article  PubMed  Google Scholar 

  • Lagerquist O, Zehr EP, Docherty D (2006) Increased spinal reflex excitability is not associated with neural plasticity underlying the cross-education effect. J Appl Physiol (1985) 100(1):83–90. doi:10.1152/japplphysiol.00533.2005

    Article  Google Scholar 

  • Lee M, Carroll TJ (2007) Cross education: possible mechanisms for the contralateral effects of unilateral resistance training. Sports Med 37(1):1–14

    Article  PubMed  Google Scholar 

  • Levy LM, Ziemann U, Chen R, Cohen LG (2002) Rapid modulation of GABA in sensorimotor cortex induced by acute deafferentation. Ann Neurol 52(6):755–761. doi:10.1002/ana.10372

    Article  CAS  PubMed  Google Scholar 

  • Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG (2011) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112(5):1849–1859. doi:10.1007/s00421-011-2167-x

    Article  PubMed  Google Scholar 

  • Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T, Bemben MG (2013) Blood flow restriction does not result in prolonged decrements in torque. Eur J Appl Physiol 113(4):923–931. doi:10.1007/s00421-012-2502-x

    Article  PubMed  Google Scholar 

  • Manini TM, Clark BC (2009) Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev 37(2):78–85. doi:10.1097/JES.0b013e31819c2e5c

    Article  PubMed  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985) 113(1):71–77. doi:10.1152/japplphysiol.00307.2012

    Article  CAS  PubMed Central  Google Scholar 

  • Moore DR, Burgomaster KA, Schofield LM, Gibala MJ, Sale DG, Phillips SM (2004) Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol 92(4–5):399–406. doi:10.1007/s00421-004-1072-y

    Article  PubMed  Google Scholar 

  • Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 64(6):552–556

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JL, Aagaard P, Bech RD, Nygaard T, Hvid LG, Wernbom M, Suetta C, Frandsen U (2012) Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol 590(Pt 17):4351–4361. doi:10.1113/jphysiol.2012.237008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perot C, Goubel F, Mora I (1991) Quantification of T- and H-responses before and after a period of endurance training. Eur J Appl Physiol Occup Physiol 63(5):368–375

    Article  CAS  PubMed  Google Scholar 

  • Pope ZK, Willardson JM, Schoenfeld BJ (2013) Exercise and blood flow restriction. J Strength Cond Res 27(10):2914–2926. doi:10.1519/JSC.0b013e3182874721

    Article  PubMed  Google Scholar 

  • Ruddy KL, Carson RG (2013) Neural pathways mediating cross education of motor function. Front Hum Neurosci 7:397. doi:10.3389/fnhum.2013.00397

    Article  PubMed  PubMed Central  Google Scholar 

  • Sale DG, MacDougall JD, Upton AR, McComas AJ (1983) Effect of strength training upon motoneuron excitability in man. Med Sci Sports Exerc 15(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld BJ (2010) The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 24(10):2857–2872. doi:10.1519/JSC.0b013e3181e840f3

    Article  PubMed  Google Scholar 

  • Schoenfeld BJ, Wilson JM, Lowery RP, Krieger JW (2014) Muscular adaptations in low- versus high-load resistance training: a meta-analysis. Eur J Sport Sci. doi:10.1080/17461391.2014.989922

    Article  Google Scholar 

  • Schoenfeld BJ, Peterson MD, Ogborn D, Contreras B, Sonmez GT (2015) Effects of low- versus high-load resistance training on muscle strength and hypertrophy in well-trained men. J Strength Cond Res. doi:10.1519/jsc.0000000000000958

    Article  Google Scholar 

  • Shield A, Zhou S (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 34(4):253–267

    Article  PubMed  Google Scholar 

  • Simonsen EB, Dyhre-Poulsen P, Voigt M (1995) Excitability of the soleus H reflex during graded walking in humans. Acta Physiol Scand 153(1):21–32. doi:10.1111/j.1748-1716.1995.tb09830.x

    Article  CAS  PubMed  Google Scholar 

  • Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Omokawa M, Kinugawa S, Tsutsui H (2010) Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol (1985) 108(6):1563–1567. doi:10.1152/japplphysiol.00504.2009

    Article  Google Scholar 

  • Suga T, Okita K, Takada S, Omokawa M, Kadoguchi T, Yokota T, Hirabayashi K, Takahashi M, Morita N, Horiuchi M, Kinugawa S, Tsutsui H (2012) Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur J Appl Physiol 112(11):3915–3920. doi:10.1007/s00421-012-2377-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N (2000) Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol (1985) 88(1):61–65

    Article  CAS  Google Scholar 

  • Takarada Y, Sato Y, Ishii N (2002) Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 86(4):308–314

    Article  PubMed  Google Scholar 

  • Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513(Pt 1):295–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Vila-Cha C, Falla D, Correia MV, Farina D (2012) Changes in H reflex and V wave following short-term endurance and strength training. J Appl Physiol (1985) 112(1):54–63. doi:10.1152/japplphysiol.00802.2011

    Article  Google Scholar 

  • Wernbom M, Apro W, Paulsen G, Nilsen TS, Blomstrand E, Raastad T (2013) Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol 113(12):2953–2965. doi:10.1007/s00421-013-2733-5

    Article  CAS  PubMed  Google Scholar 

  • Yasuda T, Brechue WF, Fujita T, Shirakawa J, Sato Y, Abe T (2009) Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci 27(5):479–489. doi:10.1080/02640410802626567

    Article  PubMed  Google Scholar 

  • Yasuda T, Abe T, Brechue WF, Iida H, Takano H, Meguro K, Kurano M, Fujita S, Nakajima T (2010) Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism 59(10):1510–1519. doi:10.1016/j.metabol.2010.01.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the individuals who volunteered to participate in this study. This study was supported by the Spanish Ministry of Economy and Competitiveness (Grant Ref. PSI2015-71061-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Márquez.

Ethics declarations

Conflict of interest

The authors declare no actual or potential conflict of interest.

Additional information

Communicated by Anni Vanhatalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colomer-Poveda, D., Romero-Arenas, S., Vera-Ibáñez, A. et al. Effects of 4 weeks of low-load unilateral resistance training, with and without blood flow restriction, on strength, thickness, V wave, and H reflex of the soleus muscle in men. Eur J Appl Physiol 117, 1339–1347 (2017). https://doi.org/10.1007/s00421-017-3622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3622-0

Keywords

Navigation