Skip to main content
Log in

High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type 2 diabetes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

It remains to be established how high-intensity aerobic interval training (HAIT) affects risk factors associated with type 2 diabetes (TD2). This study investigated effects of HAIT on maximal oxygen uptake (VO2max), glycated Hemoglobin type A1C (HbA1c), insulin resistance (IR), fat oxidation (FatOx), body weight (BW), percent body fat (%BF), lactate threshold (LT), blood pressure (BP), and blood lipid profile (BLP) among persons with T2D. Results were compared to the effects after a moderate-intensity training (MIT) program.

Methods

Thirty-eight individuals with T2D completed 12 weeks of supervised training. HAIT consisted of 4 × 4 min of walking or running uphill at 85–95% of maximal heart rate, and MIT consisted of continuous walking at 70–75% of maximal heart rate.

Results

A 21% increase in VO2max (from 25.6 to 30.9 ml kg−1 min−1, p < 0.001), and a reduction in HbA1c by −0.58% points (from 7.78 to 7.20%, p < 0.001) was found in HAIT. BW and body mass index (BMI) was reduced by 1.9% (p < 0.01). There was a tendency towards an improved FatOx at 60% VO2max (14%, p = 0.065). These improvements were significant different from MIT. Both HAIT and MIT increased velocity at LT, and reduced %BF, waist circumference, hip circumference, and BP, with no significant differences between the two groups. Correlations were found between change in VO2max and change in HbA1c when the two intervention groups were combined (R = −0.52, p < 0.01).

Conclusion

HAIT is an effective exercise strategy to improve aerobic fitness and reduce risk factors associated with T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

%BF:

Percent body fat

BG:

Blood glucose

BMI:

Body mass index

BP:

Blood pressure

BLP:

Blood lipid profile

BW:

Body weight

CHO:

Carbohydrate

CRF:

Cardiorespiratory fitness

CV:

Coefficient of variance

CVD:

Cardiovascular disease

FatOx:

Fat oxidation

GI:

Glycemic index

HAIT:

High-intensity aerobic interval training

HbA1c:

Glycated hemoglobin type A1C

HOMA-IR:

Homeostasis model of assessment for insulin resistance index

HRmax :

Maximal heart rate

HRpeak :

Peak heart rate

KCAL:

Kilo calories

KJ:

Kilo joules

[La]b :

Blood lactate concentration

MIT:

Moderate-intensity continuous training

POX:

Protein oxidation

RER:

Respiratory exchange ratio

T2D:

Type 2 diabetes

TEI:

Total energy intake

VCO2 :

Volume of carbon dioxide

VO2 :

Oxygen uptake

VO2max :

Maximal oxygen uptake

References

  • Achten J, Jeukendrup AE (2004) Optimizing fat oxidation through exercise and diet. Nutrition 20(7–8):716–727

    CAS  PubMed  Google Scholar 

  • American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(1 Suppl):S62–S69

    PubMed Central  Google Scholar 

  • American Diabetes Association (2016) Standards of medical care in diabetes-2016. J Clin Appl Res Educ Diabetes Care 39(Suppl 1):S60–S80

    Google Scholar 

  • Bertoli A, Di Daniele N, Ceccobelli M, Ficara A, Girasoli C, De Lorenzo A (2003) Lipid profile, BMI, body fat distribution, and aerobic fitness in men with metabolic syndrome. Acta Diabetol 40(Suppl 1):S130–S133

    CAS  PubMed  Google Scholar 

  • Bird SR, Hawley JA (2012) Exercise and type 2 diabetes: new prescription for an old problem. Maturitas 72(4):311–316. doi:10.1016/j.maturitas.2012.05.015 (Epub 27 Jun 2012)

    Article  PubMed  Google Scholar 

  • Bordenave S, Flavier S, Fédou C, Brun JF, Mercier J (2007) Exercise calorimetry in sedentary patients: procedures based on short 3 min steps underestimate carbohydrate oxidation and overestimate lipid oxidation. Diabetes Metab 33(5):379–384

    CAS  PubMed  Google Scholar 

  • Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ (2003) Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 46:1071–1081

    PubMed  Google Scholar 

  • Carroll S, Dudfield M (2004) What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med 34(6):371–418

    PubMed  Google Scholar 

  • Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, Albright AL, Braun B (2010) Exercise and type 2 Diabetes. The American College of Sports medicine and the American Diabetes Association: joint position stand. Diabetes Care 33(12):147–167

    Google Scholar 

  • Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e004473. doi:10.1161/JAHA.112.004473

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel MJ (2011) Lipid management in patients with type 2 diabetes. Am Health Drug Benefits 4(5):312–322

    PubMed  PubMed Central  Google Scholar 

  • DiPietro L, Dziura J, Yeckel CW, Neufer PD (2006) Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. J Appl Physiol 100:142–149

    CAS  PubMed  Google Scholar 

  • Dobrosielski DA, Gibbs BB, Ouyang P, Bonekamp S, Clark JM, Wang NY, Silber HA, Shapiro EP, Stewart KJ (2010) Effect of exercise on blood pressure in type 2 diabetes: a randomized controlled trial. J Gen Intern Med 27(11):1453–1459. doi:10.1007/s11606-012-2103-8

    Article  Google Scholar 

  • Fletcher B, Gulanick M, Lamendola C (2002) Risk factors for type 2 diabetes mellitus. J Cardiovasc Nurs 16(2):17–23

    PubMed  Google Scholar 

  • Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol 55(2):628–634

    CAS  PubMed  Google Scholar 

  • Giannopoulou I, Ploutz-Snyder LL, Carhart R, Weinstock RS, Fernhall B, Goulopoulou S, Kanaley JA (2005) Exercise is required for visceral fat loss in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 90(3):1511–1518 (Epub 14 Dec 2004)

    CAS  PubMed  Google Scholar 

  • Gibala MJ, McGee SL (2008) Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev 36(2):58–63. doi:10.1097/JES.0b013e318168ec1f

    Article  PubMed  Google Scholar 

  • Gibala MJ, Little JP, Macdonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590(5):1077–1084. doi:10.1113/jphysiol.2011.224725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen D, Dendale P, Jonkers RA, Beelen M, Manders RJ, Corluy L, Mullens A, Berger J, Meeusen R, van Loon LJ (2009) Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA(1c) in obese type 2 diabetes patients. Diabetologia 52:1789–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley JA, Gibala MJ (2012) What’s new since Hippocrates? Preventing type 2 diabetes by physical exercise and diet. Diabetologia 55(3):535–539. doi:10.1007/s00125-012-2460-1

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Zierath JR (2008) Physical activity and type 2 diabetes. Human Kinet

  • Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39(4):665–671

    PubMed  Google Scholar 

  • Helgerud J, Støren O, Hoff J (2010) Are there differences in running economy at different velocities for well-trained distance runners? Eur J Appl Physiol 108(6):1099–1105

    PubMed  Google Scholar 

  • Helgerud J, Karlsen T, Kim WY, Høydal KL, Støylen A, Pedersen H, Brix L, Ringgaard S, Kværness J, Hoff J (2011) Interval and strength training in CAD patients. Int J Sports Med 32(1):54–59. doi:10.1055/s-0030-1267180

    Article  CAS  PubMed  Google Scholar 

  • Hollekim-Strand SM, Bjørgaas MR, Albrektsen G, Tjønna AE, Wisløff U, Ingul CB (2014) High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: a randomized controlled trial. J Am Coll Cardiol 64(16):1758–1760. doi:10.1016/j.jacc.2014.07.971

    Article  PubMed  Google Scholar 

  • Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR, American Diabetes Association (ADA), European Association for the Study of Diabetes (EASD) (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35(6):1364–1379. doi:10.2337/dc12-0413 (Epub 19 Apr 2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, Suzuki E, Shimano H, Yamamoto S, Kondo K, Ohashi Y, Yamada N, Sone H (2007) Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med 167(10):999–1008

    CAS  PubMed  Google Scholar 

  • Krook A, Holm I, Pettersson S, Wallberg-Henriksson H (2003) Reduction of risk factors following lifestyle modification programme in subjects with type 2 (non-insulin dependent) diabetes mellitus. Clin Physiol Funct Imaging 23(1):21–30

    PubMed  Google Scholar 

  • Kunitomi M, Takahashi K, Wada J, Suzuki H, Miyatake N, Ogawa S, Ohta S, Sugimoto H, Shikata K, Makino H (2000) Re-evaluation of exercise prescription for Japanese type 2 diabetic patients by ventilatory threshold. Diabetes Res Clin Pract 50: 109–115

    Google Scholar 

  • Maron DJ (2000) The epidemiology of low levels of high-density lipoprotein cholesterol in patients with and without coronary artery disease. Am J Cardiol 86(12):14

    Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    CAS  PubMed  Google Scholar 

  • McArdle WD, Katch FI, Katch VL (2010) Exercise physiology. Lippingott Williams & Wilkins, Philadelphia

    Google Scholar 

  • McMurray RG, Ainsworth BE, Harrell JS, Griggs TR, Williams OD (1998) Is physical activity or aerobic power more influential on reducing cardiovascular disease risk factors? Med Sci Sports Exerc 30(10):1521–1529

    CAS  PubMed  Google Scholar 

  • Melanson EL, MacLean PS, Hill JO (2009) Exercise improves fat metabolism in muscle but does not increase 24-h fat oxidation. Exerc Sport Sci Rev 37(2):93–101. doi:10.1097/JES.0b013e31819c2f0b

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordby P, Saltin B, Helge JW (2006) Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand J Med Sci Sports 16(3):209–214

    CAS  PubMed  Google Scholar 

  • Okita K, Iwahashi H, Kozawa J, Okauchi Y, Funahashi T, Imagawa A, Shimomura I (2013) Homeostasis model assessment of insulin resistance for evaluating insulin sensitivity in patients with type 2 diabetes on insulin therapy. Endocr J 60(3):283–290

    CAS  PubMed  Google Scholar 

  • Østerås H, Hoff J, Helgerud J (2005) Effects of high-intensity endurance training on maximal oxygen consumption in healthy elderly people. J Appl Gerontol 24:377–387

    Google Scholar 

  • Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16(Suppl 1):3–63

    PubMed  Google Scholar 

  • Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004) American College of Sports Medicine position stand. Exercise and hypertension. American College of Sports Medicine. Med Sci Sports Exerc 36(3):533–553

    PubMed  Google Scholar 

  • Racette SB, Evans EM, Weiss EP, Hagberg JM, Holloszy JO (2006) Abdominal adiposity is a stronger predictor of insulin resistance than fitness among 50–95 year olds. Diabetes Care 29(3):673–678

    PubMed  Google Scholar 

  • Regensteiner JG, Sippel J, McFarling ET, Wolfel EE, Hiatt WR (1995) Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Med Sci Sports Exerc 27:875–881

    CAS  PubMed  Google Scholar 

  • Reusch JE, Bridenstine M, Regensteiner JG (2013) Type 2 diabetes mellitus and exercise impairment. Rev Endocr Metab Disord 14(1):77–86. doi:10.1007/s11154-012-9234-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Revdal A, Hollekim-Strand SM, Ingul CB (2016) Can time efficient exercise improve cardiometabolic risk factors in type 2 diabetes? A pilot study. J Sports Sci Med 15(2):308–313

    PubMed  PubMed Central  Google Scholar 

  • Rognmo Ø, Hetland E, Helgerud J, Hoff J, Slørdahl SA (2004) High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil 11(3):216–222

    PubMed  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265(3 Pt 1):E380–E391

    CAS  PubMed  Google Scholar 

  • Sahlin K, Sallstedt EK, Bishop D, Tonkonogi M (2008) Turning down lipid oxidation during heavy exercise: what is the mechanism? J Physiol Pharmacol 59(Suppl 7):19–30

    PubMed  Google Scholar 

  • Saydah SH, Fradkin J, Cowie CC (2004) Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 291(3):335–342

    CAS  PubMed  Google Scholar 

  • Segerstrøm ÅB, Glans F, Eriksson KF, Holmbäck AM, Groop L, Thorsson O, Wollmer P (2010) Impact of exercise intensity and duration on insulin sensitivity in women with T2D. Eur J Int Med 21:404–408

    Google Scholar 

  • Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, Golden SH (2004) Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 141(6):421–431

    CAS  PubMed  Google Scholar 

  • Solomon TP, Malin SK, Karstoft K, Knudsen SH, Haus JM, Laye MJ, Kirwan JP (2015) Association between cardiorespiratory fitness and the determinants of glycemic control across the entire glucose tolerance continuum. Diabetes Care 38(5):921–929. doi:10.2337/dc14-2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Støa EM, Nyhus LK, Børresen SC, Nygaard C, Hovet ÅM, Bratland-Sanda S, Helgerud J, Støren Ø (2016) Day to day variability in fat oxidation and the effect after only 1 day of change in diet composition. Appl Physiol Nutr Metab 41(4):397–404. doi:10.1139/apnm-2015-0334 (Epub 8 Dec 2015)

    Article  CAS  PubMed  Google Scholar 

  • Støren O, Helgerud J, Støa EM, Hoff J (2008) Maximal strength training improves running economy in distance runners. Med Sci Sports Exerc 40(6):1087–1092

    PubMed  Google Scholar 

  • Støren Ø, Rønnestad BR, Sunde A, Hansen J, Ellefsen S, Helgerud J (2014) A time-saving method to assess power output at lactate threshold in well-trained and elite cyclists. J Strength Cond Res 28(3):622–629. doi:10.1519/JSC.0b013e3182a73e70

    Article  PubMed  Google Scholar 

  • Støren Ø, Helgerud J, Sæbø M, Støa EM, Bratland-Sanda S, Unhjem RJ, Hoff J, Wang E (2016) The impact of age on the VO2max response to high-intensity interval training. Med Sci Sports Exerc (Epub ahead of print)

  • Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321(7258):405–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stutts WC (2002) Physical activity determinants in adults. Perceived benefits, barriers, and self efficacy. AAOHN J 50(11):499–507

    PubMed  Google Scholar 

  • Suk MH, Moon YJ, Park SW, Park CY, Shin YA (2015) Maximal fat oxidation rate during exercise in Korean women with type 2 diabetes mellitus. Diabetes Metab J 39(4):328–334. doi:10.4093/dmj.2015.39.4.328

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunde A, Støren O, Bjerkaas M, Larsen MH, Hoff J, Helgerud J (2010) Maximal strength training improves cycling economy in competitive cyclists. J Strength Cond Res 24(8):2157–2165

    PubMed  Google Scholar 

  • Swain DP, Abernathy KS, Smith CS, Lee SJ, Bunn SA (1994) Target heart rates for the development of cardiorespiratory fitness. Med Sci Sports Exerc 26(1):112–116

    CAS  PubMed  Google Scholar 

  • Terada T, Friesen A, Chahal BS, Bell GJ, McCargar LJ, Boulé NG (2013) Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Res Clin Pract 99(2):120–129. doi:10.1016/j.diabres.2012.10.019

    Article  PubMed  Google Scholar 

  • Thomas N, Alder E, Leese GP (2004) Barriers to physical activity in patients with diabetes. Postgrad Med J 80(943):287–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slørdahl SA, Kemi OJ, Najjar SM, Wisløff U (2008) Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 118(4):346–354

    PubMed  PubMed Central  Google Scholar 

  • Trejo-Gutierrez JF, Fletcher GJ (2007) Impact of exercise on blood lipids and lipoproteins. Clin Lipidol 1(3):175–181. doi:10.1016/j.jacl.2007.05.006 (Epub 7 Jun 2007)

    Article  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet 352(9131):837–853

    Google Scholar 

  • van Dijk JW, van Loon LJ (2015) Exercise strategies to optimize glycemic control in type 2 diabetes: a continuing glucose monitoring perspective. Diabetes Spectr 28(1):24–31. doi:10.2337/diaspect.28.1.24

    Article  PubMed  PubMed Central  Google Scholar 

  • Venables MC, Achten J, Jeukendrup AE (1985) Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol 98(1):160–167 (Epub 27 Aug 2004)

    Google Scholar 

  • Wang E, Næss MS, Hoff J, Albert TL, Pham Q, Richardson RS, Helgerud J (2014) Exercise-induced changes in metabolic capacity with age: the role of central cardiovascular plasticity. Age 36(2):665–676

    CAS  PubMed  Google Scholar 

  • Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN (2000) Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med 132(8):605–611

    CAS  PubMed  Google Scholar 

  • Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847

    CAS  PubMed  Google Scholar 

  • Wing RR (2002) Exercise and weight control. In: Ruderman N, Devlin JT, Schneider SH, Kriska A (eds) Handbook of exercise in diabetes. American Diabetes Association, Alexandria, pp 355–364

    Google Scholar 

  • Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, Tjønna AE, Helgerud J, Slørdahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen Ø, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115(24):3086–3094

    PubMed  Google Scholar 

Download references

Acknowledgements

We want to acknowledge the cooperation with Mid-Telemark Health Community (Midt-Telemarkraadet) in this project. A special thanks to Jørund Verpe for contributing in the planning phase of the study, Kristin Bøen and Ingunn Stavsholt for assisting in the recruitment face of the project as well as conducting motivational conversations with the participants, and Hans Torvild Kittilsen for assisting during exercise testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Maria Støa.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Funding

No external funding was received from any organizations in this project.

Additional information

Communicated by Anni Vanhatalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Støa, E.M., Meling, S., Nyhus, LK. et al. High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type 2 diabetes. Eur J Appl Physiol 117, 455–467 (2017). https://doi.org/10.1007/s00421-017-3540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3540-1

Keywords

Navigation