Skip to main content
Log in

An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

In the past two decades oxygenation responses to incremental ramp exercise, measured non-invasively by means of near-infrared spectroscopy at different locations in the body, have advanced the insights on the underpinning mechanisms of the whole-body pulmonary oxygen uptake (\(\dot{V}{\text{O}}_{2}\)) response. In healthy subjects the complex oxygenation responses at the level of locomotor and respiratory muscles, and brain were simplified and quantified by the detection of breakpoints as a deviation in the ongoing response pattern as work rate increases. These breakpoints were located in a narrow intensity range between 75 and 90 % of the maximal \(\dot{V}{\text{O}}_{2}\) and were closely related to traditionally determined thresholds in pulmonary gas exchange (respiratory compensation point), blood lactate measurements (maximal lactate steady state), and critical power. Therefore, it has been assumed that these breakpoints in the oxygenation patterns at different sites in the body might be equivalent and could, therefore, be used interchangeably. In the present review the typical oxygenation responses (at locomotor and respiratory muscle level, and cerebral level) are described and a possible framework is provided showing the physiological events that might link the breakpoints at different body sites with the thresholds determined from pulmonary gas exchange and blood lactate measurements. However, despite a possible physiological association, several arguments prevent the current practical application of these breakpoints measured at a single site as markers of exercise intensity making it highly questionable whether measurements of the oxygenation response at one single site can be used as a reflection of whole-body responses to different exercise intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C(a-v)O2 :

Arterio-venous O2 difference

DO2 :

O2 diffusion capacity

EMGTh :

Threshold in surface electromyography

Hb:

Hemoglobin

Hct:

Hematocrit

HHb:

Concentration of deoxygenated hemo- and myoglobin

Mb:

Myoglobin

NIRS:

Near-infrared spectroscopy

O2Hb:

Concentration of oxygenated hemo- and myoglobin

PaCO2 :

Partial pressure of CO2 in arterial blood

PaO2 :

Partial pressure of O2 in arterial blood

PETCO2 :

Partial pressure of end-tidal CO2

PO2 :

Partial pressure of O2

\(\dot{Q}{\text{O}}_{2}\) :

Oxygen delivery

\(\dot{Q}{\text{O}}_{{2{\text{m}}}}\) :

Muscle oxygen delivery

sEMG:

Surface electromyography

TotalHb:

Summation of concentration of O2Hb and HHb

\(\dot{V}{\text{CO}}_{2}\) :

Carbon dioxide production

\(\dot{V}{\text{O}}_{{2{\text{m}}}}\) :

Muscle oxygen uptake

\(\dot{V}{\text{O}}_{2{\rm max}}\) :

Maximal oxygen uptake

\(\dot{V}{\text{O}}_{{2{\text{peak}}}}\) :

Peak oxygen uptake

References

  • Aaron EA, Seow KC, Johnson BD, Dempsey JA (1992) Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 72:1818–1825

    CAS  PubMed  Google Scholar 

  • Ainslie PN, Cotter JD, George KP, Lucas S, Murrell C, Shave R, Thomas KN, Williams MJ, Atkinson G (2008) Elevation of cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol 586:4005–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann M, Romer LM, Subudhi AW, Pegelow DF, Dempsey JA (2007) Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Phys 581:389–403

    CAS  Google Scholar 

  • Amann M, Regan MS, Kobitary M, Eldridge MW, Bouttelier U, Pegelow DF, Dempsey JA (2010) Impact of pulmonary system limitations on locomotor muscle fatigue in patients with COPD. Am J Physiol Regul Integr Comp Physiol 293:R2036–R2045

    Article  CAS  Google Scholar 

  • Arabadzhiev TI, Dimitrov VVG, Dimitrova NA, Dimitrov GV (2010) Interpretation of EMG integral or RMS and estimates of “neuromuscular efficiency” can be misleading in fatiguing contraction. J Electromyogr Kinesiol 20:223–232

    Article  PubMed  Google Scholar 

  • Astrand PO, Cuddy TE, Saltin B, Stenberg J (1964) Cardiac output during submaximal and maximal work. J Appl Physiol 19:268–274

    CAS  PubMed  Google Scholar 

  • Babcock MA, Pegelow DF, Taha BH, Dempsey JA (1998) High frequency diaphragmatic fatigue detected with paired stimuli in humans. Med Sci Sports Exerc 30:506–511

    Article  CAS  PubMed  Google Scholar 

  • Bangsbo J, Johansen L, Graham T, Saltin B (1993) Lactate and H+ effluxes from human skeletal muscles during intense dynamic exercise. J Physiol 462:115–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behnke BJ, McDonough P, Padilla DJ, Musch TI, Poole DC (2003) Oxygen exchange profile in rat muscles of contrasting fiber types. J Physiol 549:597–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belardinelli R, Barstow TJ, Posasz J, Wasserman K (1995) Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy. Eur J Appl Physiol 70:487–492

    Article  CAS  Google Scholar 

  • Bellotti C, Calabria E, Capelli C, Pogliaghi S (2013) Determination of maximal lactate steady state in healthy adults: can NIRS help? Med Sci Sports Exerc 45:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Bhambhani Y, Buckley S, Susaki T (1997) Detection of ventilatory threshold using near infrared spectroscopy in men and women. Med Sci Sports Exerc 29:402–409

    Article  CAS  PubMed  Google Scholar 

  • Bhambhani Y, Maikala R, Buckley S (1998) Muscle oxygenation during incremental arm and leg exercise in men and women. Eur J Appl Physiol 78:422–431

    Article  CAS  Google Scholar 

  • Bhambhani Y, Malik R, Mookerjee S (2007) Cerebral oxygenation declines at exercise intensities above the respiratory compensation point. Resp Physiol Neurobiol 156:196–202

    Article  Google Scholar 

  • Boone J, Koppo K, Barstow TJ, Bouckaert J (2009) Pattern of deoxy[Hb+Mb] during ramp cycle exercise: influence of aerobic fitness status. Eur J Appl Physiol 105:851–859

    Article  PubMed  Google Scholar 

  • Boone J, Koppo K, Barstow TJ, Bouckaert J (2010) Effect of exercise protocol on deoxy[Hb+Mb]: incremental step versus ramp exercise. Med Sci Sports Exerc 42:935–942

    Article  PubMed  Google Scholar 

  • Boone J, Bouckaert J, Barstow TJ, Bourgois J (2012) Influence of priming exercise on muscle deoxy[Hb + Mb] during ramp cycle exercise. Eur J Appl Physiol 112:1143–1152

    Article  PubMed  Google Scholar 

  • Boone J, Barstow TJ, Celie B, Prieur F, Bourgois J (2015) The impact of pedal rate on muscle oxygenation, muscle activation and whole-body \(\dot{V}{\text{O}}_{2}\) during ramp exercise in healthy subjects. Eur J Appl Physiol 115:57–70

  • Boone J, Barstow TJ, Celie B, Prieur F, Bourgois J (2016) The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness. Appl Physiol Nutr Metab 41:55–62

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17:22–34

    CAS  PubMed  Google Scholar 

  • Broxterman RM, Ade CJ, Craig JC, Wilcox SL, Schlup SJ, Barstow TJ (2014) The relationship between critical speed and the respiratory compensation point: coincidence or equivalence. Eur J Sport Sci 13:1–9

    Google Scholar 

  • Butler JE, De Troyer A, Gandevia SC, Gorman RB, Hudson AL (2007) Neuromechanical matching of central respiratory drive: a new principle of motor unit recruitment? Physiol News 67:22–24

    Google Scholar 

  • Calbet JA, Gonzalez-Alonso J, Helge JW, Sondergaard H, Munch-Andersen T, Bouschel R, Saltin B (2007) Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer. J Appl Physiol 103:969–978

    Article  PubMed  Google Scholar 

  • Celie B, Boone J, Smet JE, Vanlander AV, De Bleecker JL, Van Coster RN, Bourgois JG (2015) Forearm deoxyhemoglobin and deoxymyoglobin (deoxy[Hb+Mb]) by Near-Infrared Spectroscopy (NIRS) using a handgrip test in mitochondrial myopathy. Appl Spectroscopy 69:342–347

    Article  CAS  Google Scholar 

  • Celie B, Boone J, Dumortier J, Derave W, De Backer T, Bourgois JG (2016) Possible influences on the interpretation of functional domain (FD) near-infrared spectroscopy (NIRS): an explorative study. Appl Spectrosc 70:363–371

    CAS  PubMed  Google Scholar 

  • Chiappa GR, Roseguini BT, Vieira PJ, Alves CN, Tavares A, Winkelmann ER, Ferlin EL, Stein R, Ribeiro JP (2008) Inspiratory muscle training improves blood flow to resting and exercising limbs in patients with chronic heart failure. J Am Coll Cardiol 51:1663–1671

    Article  PubMed  Google Scholar 

  • Chin LMK, Kowalchuk JM, Barstow TJ, Kondo N, Amano T, Shiojiri T, Koga S (2011) The relationship between muscle deoxygenation and activation in different muscles of the quadriceps during cycle ramp exercise. J Appl Physiol 111:1259–1265

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuang M, Ting H, Otsuka T, Sun X, Chiu F, Hansen J, Wasserman K (2002) Muscle deoxygenation as related to work rate. Med Sci Sports Exerc 34:1614–1623

    Article  CAS  PubMed  Google Scholar 

  • Craig JC, Broxterman RM, Barstow TJ (2015) Considerations for identifying the boundaries of sustainable performance. Med Sci Sports Exerc 47:1997

    Article  PubMed  Google Scholar 

  • Cross TJ, Morris NR, Haseler LJ (2010) Breathing He-O2 attenuates the slow component of O2 uptake kinetics during exercise performed above the respiratory compensation threshold. Exp Physiol 95:172–183

    Article  PubMed  Google Scholar 

  • Cross TJ, Winters C, Sheel AW, Sabapathy S (2014) Respiratory muscle power and the slow component of O2 uptake. Med Sci Sports Exerc 46:1797–1807

    Article  CAS  PubMed  Google Scholar 

  • Daussin FN, Ponsot E, Dufour SP, Lonsdorfer-Wolf E, Doutreleau S, Geny B, Piquard F, Richard R (2007) Improvement of \(\dot{V}{\text{O}}_{2{\rm max} }\) by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol 101:377–383

  • Davis ML, Barstow TJ (2013) Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy. Respir Physiol Neurobiol 186:180–187

    Article  CAS  PubMed  Google Scholar 

  • Delorey DS, Kowalchuk JM, Paterson DH (2003) Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 95:113–120

    Article  PubMed  Google Scholar 

  • Dempsey JA (2012) New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance. J Physiol 590:4129–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derchak PA, Sheel AW, Morgan BJ, Dempsey JA (2002) Effects of expiratory muscle work on muscle sympathetic nerve activity. J Appl Physiol 92:1539–1552

    Article  PubMed  Google Scholar 

  • DiMenna FJ, Bailey SJ, Jones AM (2010) Influence of body position on muscle deoxy[Hb+Mb] during ramp cycle exercise. Respir Physiol Neurobiol 173:138–145

    Article  CAS  PubMed  Google Scholar 

  • Ericson MO (1986) On the biomechanics of cycling: a study of joint and muscle load during exercise on the bicycle ergometer. Scand J Rehab Med Suppl 16:4

    Google Scholar 

  • Fan JL, Kayser B (2013) The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise. PLoS One 8:e81130

    Article  PubMed  PubMed Central  Google Scholar 

  • Faulkner JA, Heigenhauser GJ, Schork MA (1977) The cardiac output-oxygen uptake relationship of men during graded bicycle ergometry. Med Sci Sports Exerc 9:148–154

    CAS  Google Scholar 

  • Ferreira LF, McDonough P, Behnke BJ, Musch TI, Poole DC (2006) Blood flow and O2 extraction as a function of O2 uptake in muscles composed of different fiber types. Resp Physiol Neurobiol 153:237–249

    Article  Google Scholar 

  • Ferreira LF, Koga S, Barstow TJ (2007) Dynamics of noninvasively estimated microvascular O2 extraction during ramp exercise. J Appl Physiol 103:1999–2004

    Article  PubMed  Google Scholar 

  • Fisher JP, Hartwich D, Seifert T, Olesen ND, McNulty CL, Nielsen HB, Van Lieshout JJ, Secher NN (2013) Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals. J Physiol 591:1859–1870

    Article  CAS  PubMed  Google Scholar 

  • Fontana FY, Keir DA, Bellotti C, De Roia GF, Murias JM, Pogliaghi S (2015) Determination of respiratory compensation point in healthy adults: can non-invasive near-infrared spectroscopy help? J Sci Med Sport 18:590–595

    Article  PubMed  Google Scholar 

  • Forster HV, Haouzi P, Dempsey JA (2012) Control of breathing during exercise. Compr Physiol 2:743–777

    PubMed  Google Scholar 

  • Gonzales-Alonso J, Dalsgaard MK, Osada T, Voliantis S, Dawson EA, Yoshiga CC, Secher NH (2004) Brain and central hemodynamics and oxygenation during maximal exercise in humans. J Physiol 557:331–342

    Article  CAS  Google Scholar 

  • Grassi B, Poole DC, Richardson RS, Knight DR, Erickson BK, Wagner PD (1996) Muscle O2 uptake kinetics: implications for metabolic control. J Appl Physiol 80:988–998

    CAS  PubMed  Google Scholar 

  • Grassi B, Quaresima V, Marconi C, Ferrari M, Cerretelli P (1999) Blood lactate accumulation and muscle oxygenation during incremental exercise. J Appl Physiol 87:348–355

    CAS  PubMed  Google Scholar 

  • Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, Cerretelli P (2003) Muscle oxygenation and pulmonary gas exchange kinetics during cycle exercise on-transitions in humans. J Appl Physiol 95:149–158

    Article  PubMed  Google Scholar 

  • Grassi B, Lanfranconi F, Ferri A, Longaretti M, Stucchi A, Vago P, Marconi C, Morandi L (2007) Impaired oxygen extraction in metabolic myopathies: detection and quantification by near-infrared spectroscopy. Muscle Nerve 35:510–520

    Article  CAS  PubMed  Google Scholar 

  • Gravelle BM, Murias JM, Spencer MD, Paterson DH, Kowalchuk JM (2012) Adjustments of pulmonary O2 uptake and muscle deoxygenation during ramp incremental exercise and constant-load moderate-intensity exercise in young and older adults. J Appl Physiol 113:1466–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms CA, Wetter TJ, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Hanson P, Dempsey JA (1998) Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J Appl Physiol 85:609–618

    CAS  PubMed  Google Scholar 

  • Harms CA, Wetter TJ, St Croix CM, Pegelow DF, Dempsey JA (2000) Effects of respiratory muscle work on exercise performance. J Appl Physiol 89:131–138

    CAS  PubMed  Google Scholar 

  • Heigenhauser GJF, Lindinger MI, Spriet LL (1985) Lactate proton and ion fluxes in the stimulated perfused rat hindlimb. Clin Physiol 5:140

    Google Scholar 

  • Hogan MC, Richardson RS, Haseler LJ (1999) Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P-MRS study. J Appl Physiol 86:1367–1373

    CAS  PubMed  Google Scholar 

  • Hoheisel U, Unger T, Mense S (2005) Excitatory and modulatory effects of inflammatory cytokines and neutrophins on mechanosensitive group IV muscle afferents in the rat. Pain 114:168–176

    Article  CAS  PubMed  Google Scholar 

  • Hossack KF, Bruce RA (1982) Maximal cardiac function in sedentary normal men and women: comparison of sex-related changes. J Appl Physiol 53:799–804

    CAS  PubMed  Google Scholar 

  • Illi SK, Held U, Frank I, Spengler CM (2012) Effect of respiratory muscle training on exercise performance in healthy individuals: a systematic review and meta-analysis. Sports Med 42:707–724

    Article  PubMed  Google Scholar 

  • Johnson BD, Babcock MA, Suman OE, Dempsey JA (1993) Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 460:385–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen LG, Nowak M, Ide K, Secher NH (2000) Cerebral blood flow and metabolism. In: Saltin B, Boushel R, Secher N, Mitchell J (eds) Exercise and circulation in health and disease. Human Kinetics, Champaign, pp 113–124

    Google Scholar 

  • Kalliokoski KK, Oikonen V, Takala TO, Sipila H, Knuuti J, Nuutila P (2001) Enhanced oxygen extraction and reduced flow heterogeneity in exercising muscle in endurance-trained men. Am J Physiol Endocrinol Metab 280:E1015–E1021

    CAS  PubMed  Google Scholar 

  • Kalliokoski KK, Knuuti J, Nuutila P (2005) Relationship between muscle blood flow and oxygen uptake during exercise in endurance-trained and untrained men. J Appl Physiol 98:380–383

    Article  PubMed  Google Scholar 

  • Kaufman MP, Hayes SG, Adreani CM, Pickar JG (2002) Discharge properties of group III and IV afferents. Adv Exp Med Biol 508:25–32

    Article  PubMed  Google Scholar 

  • Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk J, Pogliaghi S (2015) Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc 47:1932–1940

    Article  PubMed  Google Scholar 

  • Kim Y, Seifert T, Brassard P, Rasmussen P, Vaag A, Nielsen HB, Secher NH, Van Lieshout JJ (2015) Impaired cerebral blood flow and oxygenation during exercise in type 2 diabetic patients. Physiol Rep 3:e12430

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight DR, Poole DC, Schaffartzik W, Guy HJ, Prediletto R, Hogan MC, Wagner PD (1992) Relationship between body and leg \(\dot{V}{\text{O}}_{2}\) during maximal cycle exercise. J Appl Physiol 73:1114–1121

  • Koga S, Poole DC, Ferreira LF, Whipp BJ, Kondo N, Saitoh T, Ohmae E, Barstow TJ (2007) Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. J Appl Physiol 103:2049–2056

    Article  PubMed  Google Scholar 

  • Koga S, Poole DC, Fukuoka Y, Ferreira LF, Kondo N, Ohmae E, Barstow TJ (2011) Methodological validation of the dynamic heterogeneity of muscle deoxygenation within the quadriceps during cycle exercise. Am J Physiol Regul Integr Comp Physiol 301:R534–R541

    Article  CAS  PubMed  Google Scholar 

  • Koga S, Rossiter HB, Heinonen I, Musch TI, Poole DC (2014) Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc 46:860–876

    Article  CAS  PubMed  Google Scholar 

  • Koga S, Poole DC, Kondo N, Oue A, Ohmae E, Barstow TJ (2015) Effects of increased skin blood flow on muscle oxygenation/deoxygenation: comparison of time-resolved and continuous-wave near-infrared spectroscopy signals. Eur J Appl Physiol 115:335–343

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk JM, Rossiter HB, Ward SA, Whipp BJ (2002) The effect of resistive breathing on leg muscle oxygenation using near-infrared spectroscopy during exercise in men. Exp Physiol 87:601–611

    Article  CAS  PubMed  Google Scholar 

  • Legrand R, Marles A, Prieur F, Lazzari S, Blondel N, Mucci P (2007) Related trends in locomotor and respiratory muscle oxygenation during exercise. Med Sci Sports Exerc 39:91–100

    Article  PubMed  Google Scholar 

  • Light AR, Hughen RW, Zhang J, Rainier J, Liu Z, Lee J (2008) Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X and TRPV1. J Neurophysiol 100:1184–1201

    Article  CAS  PubMed  Google Scholar 

  • Madden JA (1993) The effect of carbon dioxide on cerebral arteries. Pharmacol Ther 59:229–250

    Article  CAS  PubMed  Google Scholar 

  • Maehara K, Riley M, Galassetti P, Barstow TJ, Wasserman K (1997) Effect of hypoxia and carbon monoxide on muscle oxygenation during exercise. Am J Respir Crit Care Med 155:229–235

    Article  CAS  PubMed  Google Scholar 

  • Mancini DM, Ferraro N, Nazzaro D, Chance B, Wilson JR (1991) Respiratory muscle deoxygenation during exercise in patients with heart failure demonstrated with near-infrared spectroscopy. J Am Coll Cardiol 18:492–498

    Article  CAS  PubMed  Google Scholar 

  • McCully KK, Hamaoka T (2000) Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev 28:123–127

    CAS  PubMed  Google Scholar 

  • McDonough P, Behnke BJ, Padilla DJ, Musch TI, Poole DC (2005) Control of microvascular oxygen pressures in rat muscles comprised of different fiber types. J Physiol 563:903–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNarry MA, Welsman JR, Jones AM (2011) Influence of training and maturity status on the cardiopulmonary responses to ramp incremental cycle and upper body exercise in girls. J Appl Physiol 110:375–381

    Article  PubMed  Google Scholar 

  • McNarry MA, Farr C, Middlebrooke A, Welford D, Breese B, Armstrong N, Barker AR (2015) Aerobic function and muscle deoxygenation dynamics during ramp exercise in children. Med Sci Sports Exerc 47:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Messere A, Roatta S (2015) Local and remote thermoregulatory changes affect NIRS measurements in forearm muscles. Eur J Appl Physiol 115:2281–2291

    Article  PubMed  Google Scholar 

  • Miura T, Takeuchi T, Sato H, Nishioka N, Terakado S, Fujieda Y, Ibukiyama C (1998) Skeletal muscle deoxygenation during exercise assessed by near infrared spectroscopy and its relation to expired gas analysis parameters. Jpn Circ J 62:649–657

    Article  CAS  PubMed  Google Scholar 

  • Moalla W, Dupont G, Berthoin S, Ahmaidi S (2005) Respiratory muscle deoxygenation and ventilatory threshold assessments using near infrared spectroscopy in children. Int J Sports Med 26:576–582

    Article  CAS  PubMed  Google Scholar 

  • Morton HR (2011) Why peak power is higher at the end of steeper ramps: an explanation based on the critical power concept. J Sports Sci 29:307–309

    Article  PubMed  Google Scholar 

  • Morton HR, Stannard SR, Bartholomew K (2012) Low reproducibility of many lactate markers during incremental cycle exercise. Br J Sports Med 46:64–69

    Article  PubMed  Google Scholar 

  • Murias JM, Keir DA, Spencer MD, Paterson DH (2013a) Sex-related differences in muscle deoxygenation during ramp incremental exercise. Resp Physiol Neurbiol 189:530–536

    Article  Google Scholar 

  • Murias JM, Spencer MD, Keir DA, Paterson DH (2013b) Systemic and vastus lateralis muscle blood flow and O2 extraction during ramp incremental cycle exercise. Am J Physiol Regul Integr Comp Physiol 304:R720–R725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen HB, Boesen M, Secher NH (2001) Near-infrared spectroscopy determined brain and muscle oxygenation during exercise with normal and resistive breathing. Acta Physiol Scand 171:63–70

    CAS  PubMed  Google Scholar 

  • Noakes TD (1998) Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal. Med Sci Sports Exerc 30:1381–1398

    CAS  PubMed  Google Scholar 

  • Noakes TD, St Clair Gibson A, Lambert EV (2005) From catastrophe to complexity: a novel model of integrative central neutral regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med 39:120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nybo L, Nielsen B (2001) Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J Physiol 534:279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nybo L, Rasmussen P (2007) Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exerc Sport Sci Rev 35:110–118

    Article  PubMed  Google Scholar 

  • Nybo L, Secher NH (2004) Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 72:223–261

    Article  PubMed  Google Scholar 

  • Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107:1370–1380

    Article  CAS  PubMed  Google Scholar 

  • Okushima D, Poole DC, Rossiter HB, Barstow TJ, Kondo N, Ohmae E, Koga S (2015) Muscle deoxygenation in the quadriceps during ramp incremental cycling: deep vs. superficial heterogeneity. J Appl Physiol 119:1313–1319

    CAS  PubMed  Google Scholar 

  • Olson TP, Joyner MJ, Dietz NM, Eisenach JH, Curry TB, Johnson BD (2010) Effects of respiratory muscle work on blood flow distribution during exercise in heart failure. J Physiol 588:2487–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa T, Kime R, Hamaoka T, Katsamura T, Yamamoto M (2011) Attenuation of muscle deoxygenation precedes EMG threshold in normoxia and hypoxia. Med Sci Sports Exerc 43:1406–1413

    Article  PubMed  Google Scholar 

  • Oussaidene K, Prieur F, Tagougui S, Abaidia A, Matran R, Mucci P (2015) Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects. Resp Physiol Neurobiol 205:53–60

    Article  Google Scholar 

  • Panerai RB, Deverson ST, Mahony P, Hayes P, Evands DH (1999) Effects of CO2 on dynamic cerebral autoregulation. Physiol Meas 20:265–275

    Article  CAS  PubMed  Google Scholar 

  • Peltonen JE, Paterson DH, Shoemaker JK, Delorey DS, Dumanoir GR, Petrella RJ, Kowalchuk JM (2009) Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise. Resp Physiol Neurobiol 169:24–35

    Article  Google Scholar 

  • Poole DC, Jones AM (2012) Oxygen uptake kinetics. Compr Physiol 2:933–996

    PubMed  Google Scholar 

  • Poole DC, Schaffartzik W, Knight DR, Derion T, Kennedy B, Guy HJ, Prediletto R, Wagner PD (1991) Contribution of exercising leg to the slow components of oxygen uptake kinetics in humans. J Appl Physiol 71:1245–1260

    CAS  PubMed  Google Scholar 

  • Poole DC, Copp SW, Ferguson SK, Musch TI (2013) Skeletal muscle capillary function: contemporary observations and novel hypotheses. Exp Physiol 98:1645–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieur F, Mucci P (2013) Effect of high-intensity interval training on the profile of muscle deoxygenation heterogeneity during incremental exercise. Eur J Appl Physiol 113:249–257

    Article  CAS  PubMed  Google Scholar 

  • Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PWR (1995) Oxidative capacity of human muscle fiber types—effects of age and training status. J Appl Physiol 78:2033–2038

    CAS  PubMed  Google Scholar 

  • Proctor DN, Beck KC, Shen PH, Eickhoff TJ, Halliwill JR, Joyner MJ (1998) Influence of age and gender on cardiac output-\(\dot{V}{\text{O}}_{2}\) relationships during submaximal cycle ergometry. J Appl Physiol 84:559–604

  • Racinais S, Buchheit M, Girard O (2014) Breakpoints in ventilation, cerebral and muscle oxygenation, and muscle activity during an incremental cycling exercise. Front Physiol 5:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen P, Stie H, Nielsen B, Nybo L (2006) Enhanced cerebral CO2 reactivity during strenuous exercise in man. Eur J Appl Physiol 96:299–304

    Article  CAS  PubMed  Google Scholar 

  • Richardson RS, Poole DC, Knight DR, Kurdak SS, Hogan MC, Grassi B, Johnson EC, Kendrick KF, Erickson BK, Wagner PD (1993) High muscle blood flow in man: is maximal O2 extraction comprised? J Appl Physiol 75:1911–1916

    CAS  PubMed  Google Scholar 

  • Robertson CH, Pagel MA, Johnson RL (1977) Distribution of blood flow, oxygen consumption, and work output among respiratory muscles during unobstructed hyperventilation. J Clin Invest 59:43–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Roca J, Agusti AGN, Alonso A, Poole DC, Viegas C, Barbera JA, Rodriguez-Roisin R, Ferrer A, Wagner PD (1992) Effects of training on muscle O2 transport at \(\dot{V}{\text{O}}_{2{\rm max} }\). J Appl Physiol 73:1067–1076

  • Romer LM, Miller JD, Haverkamp HC, Pegelow DF, Dempsey JA (2007) Inspiratory muscles do no limit maximal incremental exercise performance in healthy subjects. Resp Physiol Neurobiol 156:353–361

    Article  Google Scholar 

  • Rooks CR, Thom NJ, McCully KK, Dishman RK (2010) Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol 92:134–150

    Article  PubMed  Google Scholar 

  • Rube N, Secher NH (1991) Effect of training on central factors in fatigue following two-and one-leg static exercise is man. Acta Physiol Scand 141:87–95

    Article  CAS  PubMed  Google Scholar 

  • Rupp T, Perrey S (2008) Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol 102:153–163

    PubMed  Google Scholar 

  • Saltin B, Calbet JA (2006) Point: in health and in a normoxic environment \(\dot{V}{\text{O}}_{2{\rm max} }\) is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:744–745

  • Segizbaeva MO, Donina ZA, Timofeev NN, Korolyov YN, Golubev VN, Aleksandrova NP (2013) EMG analysis of human inspiratory muscle resistance to fatigue during exercise. Adv Exp Med Biol 788:197–205

    Article  CAS  PubMed  Google Scholar 

  • Seifert T, Secher NH (2011) Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol 95:406–426

    Article  CAS  PubMed  Google Scholar 

  • Seifert T, Rasmussen P, Brassard P, Homann PH, Wissenberg M, Nordby P, Stallknecht B, Secher NH, Nielsen HB (2009) Cerebral oxygenation and metabolism during exercise following three months of endurance training in healthy overweight males. Am J Physiol Regul Integr Comp Physiol 297:R867–R876

    Article  CAS  PubMed  Google Scholar 

  • Shadgan B, Guenette JA, Sheel WA, Reid DW (2011) Sternocleidomastoid muscle deoxygenation in response to incremental inspiratory threshold loading measured by near infrared spectroscopy. Resp Physiol Neurobiol 178:202–209

    Article  Google Scholar 

  • Smith KJ, Billaut F (2010) Influence of cerebral and muscle oxygenation on repeated-sprint ability. Eur J Appl Physiol 109:989–999

    Article  PubMed  Google Scholar 

  • Sonetti DA, Wetter TJ, Pegelow DF, Dempsey JA (2001) Effects of respiratory muscle training versus placebo on endurance exercise performance. Resp Physiol 127:185–199

    Article  CAS  Google Scholar 

  • Spencer MD, Murias J, Paterson DH (2012) Characterizing the profile of muscle deoxygenation during ramp incremental exercise in young men. Eur J Appl Physiol 112:3349–3360

    Article  CAS  PubMed  Google Scholar 

  • Spencer MD, Amano T, Kondo N, Kowalchuk JM, Koga S (2014) Muscle O2 extraction reserve during intense cycling is site-specific. J Appl Physiol 117:1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Croix CM, Morgan BJ, Wetter TJ, Dempsey JA (2000) Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans. J Physiol 529:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subudhi AW, Lorenz MC, Fulco CS, Roach RC (2007) Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol 103:177–183

    Article  CAS  PubMed  Google Scholar 

  • Subudhi AW, Lorenz MC, Fulco CS, Roach RC (2008) Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance. Am J Physiol Heart Circ Physiol 294:H164–H171

    Article  CAS  PubMed  Google Scholar 

  • Subudhi AW, Olin JT, Dimmen AC, Polaner DM, Kayser B, Roach RC (2011) Does cerebral oxygen delivery limit incremental exercise performance. J Appl Physiol 111:1727–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi S, Murase N, Kime R, Niwayama M, Osada T, Katsumura T (2016) Aerobic training enhances muscle deoxygenation in early post-myocardial infarction. Eur J Appl Physiol 116:673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terakado S, Takeuchi T, Miura T, Sato H, Nishioka N, Fujieda Y, Kobayashi R, Ibukiyama C (1999) Early occurrence of respiratory muscle deoxygenation assess by near-infrared spectroscopy during leg exercise in patients with chronic heart failure. Jpn Circ J 63:97–103

    Article  CAS  PubMed  Google Scholar 

  • Turner LA, Tecklenburg-Lund SL, Chapman RF, Stager JM, Wilhite DP, Mickleborough TD (2012) Inspiratory muscle training lowers the oxygen cost of voluntary hyperpnea. J Appl Physiol 112:127–134

    Article  PubMed  Google Scholar 

  • Turner LA, Tecklenburg-Lund S, Chapman RF, Stager JM, Duke JW, Mickleborough TD (2013a) Inspiratory loading and limb locomotor and respiratory muscle deoxygenation during cycling exercise. Resp Physiol Neurobiol 185:506–514

    Article  Google Scholar 

  • Turner RM, Bird SM, Higgins JPT (2013b) The impact of study size on meta-analyses: examination of underpowered studies in Cochrane reviews. PLoS One 8:e59202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Beekvelt MCP, Borghuis MS, Van Engelen BGM, Wevers RA, Colier WNJM (2001) Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci 101:21–28

    Article  PubMed  Google Scholar 

  • Vogiatzis I, Athanasopoulos D, Boushel R, Guenette JA, Koskolou M, Vasilopoulou M, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2008) Contribution of respiratory muscle blood flow to exercise-induced diaphragmatic fatigue in trained cyclists. J Physiol 586:5575–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogiatzis I, Athanasopoulos D, Habzettl H, Kuebler WM, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2009) Intercostal muscle blood flow limitation in athletes during maximal exercise. J Physiol 587:3665–3677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogiatzis I, Louvaris Z, Habazettl H, Athanasopoulos D, Andrianopoulos V, Cherouveim E, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2011) Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic conditions in athletes. J Physiol 589:4027–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner PD (1992) Gas exchange and peripheral diffusion limitation. Med Sci Sports Exerc 24:54–58

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD (1995) Muscle O2 transport and O2 dependent control of metabolism. Med Sci Sports Exerc 27:47–53

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD (2006) Counterpoint: in health and in normoxic environment \(\dot{V}{\text{O}}_{2{\rm max} }\) is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:745–747

  • Witt JD, Guenette JA, Rupert JL, McKenzie DC, Sheel AW (2007) Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. J Physiol 584:1019–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. T.J. Barstow for his insightful comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Boone.

Additional information

Communicated by Nigel A. S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boone, J., Vandekerckhove, K., Coomans, I. et al. An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur J Appl Physiol 116, 2085–2102 (2016). https://doi.org/10.1007/s00421-016-3468-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3468-x

Keywords

Navigation