Skip to main content
Log in

Short-term interval training at both lower and higher intensities in the severe exercise domain result in improvements in \(\dot{V}{\text{O}}_{2}\) on-kinetics

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Although high-intensity interval training (HIT) seems to promote greater improvements in aerobic parameters than continuous training, the influence of exercise intensity on \(\dot{V}{\text{O}}_{2}\) on-kinetics remains under investigation.

Methods

After an incremental test, twenty-one recreationally trained cyclists performed several time-to-exhaustion tests to determine critical power (CP), and the highest intensity (I HIGH), and the lowest exercise duration (T LOW) at which \(\dot{V}{\text{O}}_{2{\rm max}}\) is attained during constant exercise. Subjects also completed a series of step transitions to moderate- and heavy-intensity work rates to determine pulmonary \(\dot{V}{\text{O}}_{2}\) on-kinetics. Surface electromyography (EMG) of vastus lateralis muscle and blood lactate accumulation (∆BLC) was measured during heavy exercise. Subjects were assigned to one of two 4-week work-matched training groups: the lower [105 % CP: n = 11; 4 × 5 min at 105 % CP (218 ± 39 W), 1 min recovery] or the upper [I HIGH: n = 10; 8 × 100 % I HIGH (355 ± 60 W), 1:2 work:recovery ratio] intensity of the severe exercise domain.

Results

The two interventions were similarly effective in reducing the phase II \(\dot{V}{\text{O}}_{2}\) time constant during moderate (105 % CP: 34 ± 13 to 25 ± 8 s; I HIGH: 31 ± 9 to 23 ± 6 s) and heavy exercise (105 % CP: 25 ± 7 to 18 ± 5 s; I HIGH: 27 ± 7 to 16 ± 5 s) and in reducing the amplitude of \(\dot{V}{\text{O}}_{2}\) slow component, EMG amplitude, and ∆BLC during heavy exercise.

Conclusion

In conclusion, the short-term adjustments in response to step transitions to moderate and heavy exercise were independent of training intensity within the severe exercise domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

τ :

Time constant

∆50 %:

Intensity requiring 50 % of the difference between the LT and \(\dot{V}{\text{O}}_{{2}{\rm max}}\)

BLC:

Blood lactate concentration

CP:

Critical power

EMG:

Electromyography

HIT:

High-intensity interval training

I HIGH :

The highest constant intensity at which \(\dot{V}{\text{O}}_{{2}{\rm max}}\) is attained

LT:

Lactate threshold

MRT:

Mean response time

RMS:

Root mean square

TD:

Time delay

T LIM :

Time-to-exhaustion

T LOW :

The lowest exercise duration at which \(\dot{V}{\text{O}}_{{2}{\rm max}}\) is attained

\(\dot{V}{\text{O}}_{2}\) :

Pulmonary oxygen uptake

\(\dot{V}{\text{O}}_{{2}{\rm max}}\) :

Maximum oxygen uptake

\(\dot{V}\)O2SC :

\(\dot{V}{\text{O}}_{2}\) slow component

W´:

Work capacity above critical power

References

  • Altenburg TM, Degens H, van Mechelen W, Sargeant AJ, de Haan A (2007) Recruitment of single muscle fibers during submaximal cycling exercise (1985). J Appl Physiol 103(5):1752–1756. doi:10.1152/japplphysiol.00496.2007

    Article  CAS  PubMed  Google Scholar 

  • Babcock MA, Paterson DH, Cunningham DA (1994) Effects of aerobic endurance training on gas exchange kinetics of older men. Med Sci Sports Exerc 26(4):447–452

    CAS  PubMed  Google Scholar 

  • Bailey SJ, Wilkerson DP, Dimenna FJ, Jones AM (2009) Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. J Appl Physiol (1985) 106(6):1875–1887. doi:10.1152/japplphysiol.00144.2009

    Article  CAS  Google Scholar 

  • Beneke R, Leithauser RM, Ochentel O (2011) Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform 6(1):8–24

    Article  PubMed  Google Scholar 

  • Berger NJ, Tolfrey K, Williams AG, Jones AM (2006) Influence of continuous and interval training on oxygen uptake on-kinetics. Med Sci Sports Exerc 38(3):504–512. doi:10.1249/01.mss.0000191418.37709.81

    Article  PubMed  Google Scholar 

  • Borrani F, Candau R, Millet GY, Perrey S, Fuchslocher J, Rouillon JD (2001) Is the VO2 slow component dependent on progressive recruitment of fast-twitch fibers in trained runners? J Appl Physiol (1985) 90(6):2212–2220

    CAS  Google Scholar 

  • Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med 43(10):927–954. doi:10.1007/s40279-013-0066-5

    Article  PubMed  Google Scholar 

  • Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol (1985) 98(6):1985–1990. doi:10.1152/japplphysiol.01095.2004

    Article  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586(1):151–160. doi:10.1113/jphysiol.2007.142109

    Article  CAS  PubMed  Google Scholar 

  • Burnley M, Jones AM (2007) Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci 7(2):63–79. doi:10.1080/17461390701456148

    Article  Google Scholar 

  • Caputo F, Denadai BS (2008) The highest intensity and the shortest duration permitting attainment of maximal oxygen uptake during cycling: effects of different methods and aerobic fitness level. Eur J Appl Physiol 103(1):47–57. doi:10.1007/s00421-008-0670-5

    Article  PubMed  Google Scholar 

  • Costill DL, Flynn MG, Kirwan JP, Houmard JA, Mitchell JB, Thomas R, Park SH (1988) Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 20(3):249–254

    Article  CAS  PubMed  Google Scholar 

  • Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295(1):R264–272. doi:10.1152/ajpregu.00875.2007

    Article  CAS  PubMed  Google Scholar 

  • De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R (2013) Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform 8(2):111–122

    Article  PubMed  Google Scholar 

  • Figueira TR, Caputo F, Machado CE, Denadai BS (2008) Aerobic fitness level typical of elite athletes is not associated with even faster vo2 kinetics during cycling exercise. J Sports Sci Med 7(1):132–138

    PubMed  PubMed Central  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–94

    CAS  PubMed  Google Scholar 

  • Fukuoka Y, Grassi B, Conti M, Guiducci D, Sutti M, Marconi C, Cerretelli P (2002) Early effects of exercise training on on- and off-kinetics in 50-year-old subjects. Pflugers Arch 443(5–6):690–697. doi:10.1007/s00424-001-0748-y

    Article  CAS  PubMed  Google Scholar 

  • Gaesser GA, Ward SA, Baum VC, Whipp BJ (1994) Effects of infused epinephrine on slow phase of O2 uptake kinetics during heavy exercise in humans. J Appl Physiol (1985) 77(5):2413–2419

    CAS  Google Scholar 

  • Gollnick PD, Piehl K, Saltin B (1974) Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241(1):45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ (2016) Training intensity modulates changes in PGC-1alpha and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J 30(2):959–970. doi:10.1096/fj.15-276907

    Article  CAS  PubMed  Google Scholar 

  • Grassi B, Rossiter HB, Zoladz JA (2015) Skeletal muscle fatigue and decreased efficiency: two sides of the same coin? Exerc Sport Sci Rev 43(2):75–83. doi:10.1249/JES.0000000000000043

    Article  PubMed  Google Scholar 

  • Hill DW, Poole DC, Smith JC (2002) The relationship between power and the time to achieve VO2max. Med Sci Sports Exerc 34(4):709–714

    Article  PubMed  Google Scholar 

  • Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403(4):369–376

    Article  CAS  PubMed  Google Scholar 

  • Jacobs RA, Lundby C (2013) Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol (1985) 114(3):344–350. doi:10.1152/japplphysiol.01081.2012

    Article  CAS  Google Scholar 

  • Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC (2011) Slow component of VO2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc 43(11):2046–2062. doi:10.1249/MSS.0b013e31821fcfc1

    Article  PubMed  Google Scholar 

  • Koga S, Rossiter HB, Heinonen I, Musch TI, Poole DC (2014) Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc 46(5):860–876. doi:10.1249/MSS.0000000000000178

    Article  CAS  PubMed  Google Scholar 

  • Krustrup P, Soderlund K, Mohr M, Bangsbo J (2004) The slow component of oxygen uptake during intense, sub-maximal exercise in man is associated with additional fibre recruitment. Pflugers Arch 447(6):855–866. doi:10.1007/s00424-003-1203-z

    Article  CAS  PubMed  Google Scholar 

  • Lake MJ, Cavanagh PR (1996) Six weeks of training does not change running mechanics or improve running economy. Med Sci Sports Exerc 28(7):860–869

    Article  CAS  PubMed  Google Scholar 

  • Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32(1):53–73

    Article  PubMed  Google Scholar 

  • Londeree BR (1997) Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc 29(6):837–843

    Article  CAS  PubMed  Google Scholar 

  • Lundby C, Jacobs RA (2016) Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol 101(1):17–22. doi:10.1113/EP085319

    Article  CAS  PubMed  Google Scholar 

  • MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (1985) 84(6):2138–2142

    CAS  Google Scholar 

  • McKay BR, Paterson DH, Kowalchuk JM (2009) Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J Appl Physiol (1985) 107(1):128–138. doi:10.1152/japplphysiol.90828.2008

    Article  Google Scholar 

  • Milanovic Z, Sporis G, Weston M (2015) Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med 45(10):1469–1481. doi:10.1007/s40279-015-0365-0

    Article  PubMed  Google Scholar 

  • Murgatroyd SR, Ferguson C, Ward SA, Whipp BJ, Rossiter HB (2011) Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans. J Appl Physiol (1985) 110(6):1598–1606. doi:10.1152/japplphysiol.01092.2010

    Article  Google Scholar 

  • Murias JM, Kowalchuk JM, Paterson DH (2010) Speeding of VO2 kinetics with endurance training in old and young men is associated with improved matching of local O2 delivery to muscle O2 utilization. J Appl Physiol (1985) 108(4):913–922. doi:10.1152/japplphysiol.01355.2009

    Article  Google Scholar 

  • Murias JM, Kowalchuk JM, Paterson DH (2011) Speeding of VO2 kinetics in response to endurance-training in older and young women. Eur J Appl Physiol 111(2):235–243. doi:10.1007/s00421-010-1649-6

    Article  PubMed  Google Scholar 

  • Murias JM, Edwards JA, Paterson DH (2016) Effects of short-term training and detraining on VO2 kinetics: faster VO2 kinetics response after one training session. Scand J Med Sci Sports 26(6):620–629. doi:10.1111/sms.12487

    Article  CAS  PubMed  Google Scholar 

  • Osborne MA, Schneider DA (2006) Muscle glycogen reduction in man: relationship between surface EMG activity and oxygen uptake kinetics during heavy exercise. Exp Physiol 91(1):179–189. doi:10.1113/expphysiol.2005.031450

    Article  CAS  PubMed  Google Scholar 

  • Perrey S, Betik A, Candau R, Rouillon JD, Hughson RL (2001) Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise. J Appl Physiol (1985) 91(5):2135–2142

    CAS  Google Scholar 

  • Phillips SM, Green HJ, MacDonald MJ, Hughson RL (1995) Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. J Appl Physiol (1985) 79(6):1914–1920

    CAS  Google Scholar 

  • Poole DC, Jones AM (2012) Oxygen uptake kinetics. Compr Physiol 2(2):933–996. doi:10.1002/cphy.c100072

    PubMed  Google Scholar 

  • Poole DC, Schaffartzik W, Knight DR, Derion T, Kennedy B, Guy HJ, Prediletto R, Wagner PD (1991) Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol (1985) 71(4):1245–1260

    CAS  Google Scholar 

  • Poole DC, Gladden LB, Kurdak S, Hogan MC (1994) L-(+)-lactate infusion into working dog gastrocnemius: no evidence lactate per se mediates VO2 slow component. J Appl Physiol (1985) 76(2):787–792

    CAS  Google Scholar 

  • Powers SK, Dodd S, Beadle RE (1985) Oxygen uptake kinetics in trained athletes differing in VO2max. Eur J Appl Physiol Occup Physiol 54(3):306–308

    Article  CAS  PubMed  Google Scholar 

  • Rossiter HB (2011) Exercise: kinetic considerations for gas exchange. Compr Physiol 1(1):203–244. doi:10.1002/cphy.c090010

    PubMed  Google Scholar 

  • Roston WL, Whipp BJ, Davis JA, Cunningham DA, Effros RM, Wasserman K (1987) Oxygen uptake kinetics and lactate concentration during exercise in humans. Am Rev Respir Dis 135(5):1080–1084. doi:10.1164/arrd.1987.135.5.1080

    CAS  PubMed  Google Scholar 

  • Seiler S, Joranson K, Olesen BV, Hetlelid KJ (2013) Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports 23(1):74–83. doi:10.1111/j.1600-0838.2011.01351.x

    Article  CAS  PubMed  Google Scholar 

  • Sisson SB, Katzmarzyk PT, Earnest CP, Bouchard C, Blair SN, Church TS (2009) Volume of exercise and fitness nonresponse in sedentary, postmenopausal women. Med Sci Sports Exerc 41(3):539–545. doi:10.1249/MSS.0b013e3181896c4e

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnes T, de Aguiar RA, Cruz RS, Caputo F (2016) Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol 116(1):161–169. doi:10.1007/s00421-015-3263-0

    Article  PubMed  Google Scholar 

  • Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 3(5):346–356

    Article  CAS  PubMed  Google Scholar 

  • Whipp BJ, Wasserman K (1972) Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol 33(3):351–356

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to all colleagues who contributed and to the subjects in this study. This study was supported by the National Council of Scientific and Technological Development (CNPq) and Santa Catarina State Research Foundation (FAPESC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Turnes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The results of the current study do not constitute endorsement of the product by the authors or the journal.

Additional information

Communicated by Anni Vanhatalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turnes, T., de Aguiar, R.A., de Oliveira Cruz, R.S. et al. Short-term interval training at both lower and higher intensities in the severe exercise domain result in improvements in \(\dot{V}{\text{O}}_{2}\) on-kinetics. Eur J Appl Physiol 116, 1975–1984 (2016). https://doi.org/10.1007/s00421-016-3449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3449-0

Keywords

Navigation