Skip to main content
Log in

Does the type of visual feedback information change the control of standing balance?

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate whether different types of visual feedback influence the control of standing balance.

Methods

Twenty-six subjects performed three tasks on a force platform: (1) standing with eyes open; (2) maintaining the own center of pressure (COP) displacement (internal feedback) on a target; and (3) pointing with a handheld laser pointer (external feedback) on a target. The COP and ankle displacements were measured through a force platform and a biaxial electrogoniometer, respectively, during 60 s in each task. Global posturographic parameters were computed in the anterior–posterior and medial–lateral directions. In addition, the standard deviation and mean frequency of the ankle movements were also calculated in the sagittal plane.

Results

The sway area and standard deviation of COP differed between conditions, wherein smaller and higher values were typically observed during the internal and external feedback, respectively. Conversely, both the mean frequency and the mean velocity of COP were greater during internal feedback compared with other tasks, while external feedback usually leads to smaller values. Additionally, smaller and higher values for the ankle standard deviation and the ankle mean frequency, respectively, were observed during internal feedback, with the external feedback condition showing an opposite behavior.

Conclusions

These results showed that the global postural sway and the postural adjustments at ankle during standing balance change depending on the type of visual feedback information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AP:

Anterior–posterior

COP:

Center of pressure

EO:

Eyes open

EXTVF :

External visual feedback

INTVF :

Internal visual feedback

SD:

Standard deviation

ML:

Medial–lateral

References

  • Anker LC, Weerdesteyn V, van Nes IJ, Straatman H, Geurts AC (2008) The relation between postural stability and weight distribution in healthy subjects. Gait Posture 27:471–477

    Article  PubMed  Google Scholar 

  • Balasubramaniam R, Riley MA, Turvey MT (2000) Specificity of postural sway to the demands of a precision task. Gait Posture 11:12–24

    Article  CAS  PubMed  Google Scholar 

  • Benjuya N, Melzer I, Kaplanski J (2004) Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. J Gerontol A Biol Sci Med Sci 59:166–171

    Article  PubMed  Google Scholar 

  • Boudrahem S, Rougier PR (2009) Relation between postural assessment with eyes open and centre of pressure visual feedback effects in healthy individuals. Exp Brain Res 195:145–152

    Article  PubMed  Google Scholar 

  • Bronner S, Agraharasamakulam S, Ojofeitimi S (2010) Reliability and validity of a new ankle electrogoniometer. J Med Eng Technol 34:350–355

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MG, Frank JS, Winter DA, Peysar GW (2001a) Sampling duration effects on centre of pressure summary measures. Gait Posture 13:35–40

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MG, Frank JS, Silcher CP, Peysar GW (2001b) The influence of postural threat on the control of upright stance. Exp Brain Res 138:210–218

    Article  CAS  PubMed  Google Scholar 

  • Cawsey RP, Chua R, Carpenter MG, Sanderson DJ (2009) To what extent can increasing the magnification of visual feedback of the centre of pressure position change the control of quiet standing balance? Gait Posture 29:280–284

    Article  PubMed  Google Scholar 

  • Danna-Dos-Santos A, Degani AM, Zatsiorsky VM, Latash ML (2008) Is voluntary control of natural postural sway possible? J Mot Behav 40:179–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Dault MC, de Haart M, Geurts AC, Arts IM, Nienhuis B (2003) Effects of visual center of pressure feedback on postural control in young and elderly healthy adults and in stroke patients. Hum Mov Sci 22:221–236

    Article  PubMed  Google Scholar 

  • Day BL, Steiger MJ, Thompson PD, Marsden CD (1993) Human body motion when standing: implications for afferent control of lateral sway. J Physiol 469:479–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte M, Freitas SM (2010) Revision of posturography based on force plate for balance evaluation (article in Portuguese). Rev Bras Fisioter 14:183–192

    Article  PubMed  Google Scholar 

  • Duarte M, Zatsiorsky VM (2002) Effects of body lean and visual information on the equilibrium maintenance during stance. Exp Brain Res 146:60–69

    Article  PubMed  Google Scholar 

  • Freitas SM, Duarte M (2012) Joint coordination in young and older adults during quite stance: effect of visual feedback of centre of pressure. Gait Posture 35:83–87

    Article  PubMed  Google Scholar 

  • Gatev P, Thomas S, Kepple T, Hallett M (1999) Feedforward ankle strategy of balance during quiet stance in adults. J Physiol 514:915–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad JM, Rietdyk S, Claxton LJ, Huber JE (2013) Task-dependent postural control throughout the lifespan. Exerc Sport Sci Rev 41:123–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Halická Z, Lobotková J, Bučková K, Hlavačka F (2014) Effectiveness of different visual biofeedback signals for human balance improvement. Gait Posture 39:410–414

    Article  PubMed  Google Scholar 

  • Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55:1369–1381

    CAS  PubMed  Google Scholar 

  • Horak FB, Frank J, Nutt J (1996) Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone. J Neurophysiol 75:2380–2396

    CAS  PubMed  Google Scholar 

  • Hwang IS, Huang CT, Cherng RJ, Huang CC (2006) Postural fluctuations during pointing from a unilateral or bilateral stance. Hum Mov Sci 25:275–291

    Article  PubMed  Google Scholar 

  • Kiemel T, Zhang Y, Jeka JJ (2011) Identification of neural feedback for upright stance in humans: stabilization rather than sway minimization. J Neurosci 31:15144–15153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litvinenkova V, Hlavacka F (1973) The visual feed-back gain influence upon the regulation of the upright posture in man. Agressologie 14:95–99

    CAS  PubMed  Google Scholar 

  • Loram ID, Kelly SM, Lakie M (2001) Human balancing of an inverted pendulum: is sway size controlled by ankle impedance? J Physiol 532:879–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra S, Fraizer EV (2004) Effects of explicit sway-minimization on postural-suprapostural dual-task performance. Hum Mov Sci 23:1–20

    Article  PubMed  Google Scholar 

  • Morrison S, Keogh J (2001) Changes in the dynamics of tremor during goal-directed pointing. Hum Mov Sci 20:675–693

    Article  CAS  PubMed  Google Scholar 

  • Nardone A, Schieppati M (2010) The role of instrumental assessment of balance in clinical decision making. Eur J Phys Rehabil Med 46:221–237

    CAS  PubMed  Google Scholar 

  • Oliveira LF, Simpson DM, Nadal J (1996) Calculation of area of stabilometric signals using principal component analysis. Physiol Meas 17:305–312

    Article  CAS  PubMed  Google Scholar 

  • Park E, Schöner G, Scholz JP (2012) Functional synergies underlying control of upright posture during changes in head orientation. PLoS One 7:e41583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei L, Li H, Fu Y, Tang Y (2011) Influences of visual feedback indicator scales on human upright postural control. CYBER 6011803:249–253

    Google Scholar 

  • Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM (1996) Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng 43:956–966

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Stoffregen TA, Grocki MJ, Turvey MT (1999) Postural stabilization for the control of touching. Hum Mov Sci 18:795–817

    Article  Google Scholar 

  • Runge CF, Shupert CL, Horak FB, Zajac FE (1999) Ankle and hip postural strategies defined by joint torques. Gait Posture 10:161–170

    Article  CAS  PubMed  Google Scholar 

  • Sayenko DG, Alekhina MI, Masani K, Vette AH, Obata H, Popovic MR, Nakazawa K (2010) Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord 48:886–893

    Article  CAS  PubMed  Google Scholar 

  • Stoffregen TA, Smart LJ, Bardy BG, Pagulayan RJ (1999) Postural stabilization of looking. J Exp Psychol Human Percept Perform 25:1641–1658

    Article  Google Scholar 

  • Taube W, Leukel C, Gollhofer A (2008) Influence of enhanced visual feedback on postural control and spinal reflex modulation during stance. Exp Brain Res 188:353–361

    Article  PubMed  Google Scholar 

  • Van Peppen RPS, Kortsmit M, Lindeman E, Kwakkel G (2006) Effects of visual feedback therapy on postural control in bilateral standing after stroke: a systematic review. J Rehabil Med 38:3–9

    Article  PubMed  Google Scholar 

  • Vieira TM, Baudry S, Botter A (2016) Young, healthy subjects can reduce the activity of calf muscles when provided with EMG biofeedback in upright stance. Front Physiol 7:1–12

    Article  Google Scholar 

  • Visser J, Carpenter MG, Van der Kooij H, Bloem B (2008) The clinical utility of posturography. Clin Neurophysiol 119:2424–2436

    Article  PubMed  Google Scholar 

  • Winter DA, Prince F, Frank JS et al (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343

    CAS  PubMed  Google Scholar 

  • Wulf G (2013) Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol 6:77–104

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the volunteers for their cooperation. This work was supported by a Grant from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and FAPERJ. T.L. was recipient of a CAPES-PNPD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio dos Anjos.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest, financial or otherwise.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Anjos, F., Lemos, T. & Imbiriba, L.A. Does the type of visual feedback information change the control of standing balance?. Eur J Appl Physiol 116, 1771–1779 (2016). https://doi.org/10.1007/s00421-016-3434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3434-7

Keywords

Navigation