Skip to main content
Log in

Changes in tibialis anterior corticospinal properties after acute prolonged muscle vibration

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Prolonged local vibration is known to impair muscle performance. While involved mechanisms were previously evidenced at the spinal level, changes at the cortical level were also hypothesized. The aims of the present study were to investigate the effects of 30 min of 100-Hz tibialis anterior muscle vibration on force production capacities and to further identify the respective changes in spinal loop properties, descending voluntary drive and corticospinal properties.

Methods

Thirteen subjects were tested before and after a vibration condition, and before and after a resting control condition. Maximal voluntary contraction (MVC) in dorsiflexion was measured. Transcranial magnetic stimulation was superimposed during MVCs to assess cortical voluntary activation (VATMS), motor-evoked potential amplitude (MEP) and cortical silent period length (CSP). MEP and CSP were also measured during 50 and 75 % MVC contractions. Spinal excitability was investigated by mean of H-reflex.

Results

There were no vibration effects on MVC (p = 0.805), maximal EMG activity (p = 0.653), VATMS (p = 1), and CSP (p = 0.877). Vibration tended to decrease MEP amplitude (p = 0.117). H-reflex amplitude was depressed following vibration (p = 0.008).

Conclusions

Dorsiflexion maximal force production capacities were unaffected by 30 min of tibialis anterior muscle vibration, despite spinal loop and corticospinal excitabilities being reduced. These findings suggest that acute prolonged vibration has the potential to modulate corticospinal excitability of lower limb muscles without a concomitant functional consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSP:

Cortical silent period

CSP50 :

CSP recorded during 50 % MVC contraction

CSPMVC :

CSP recorded during MVC

ERT:

Estimated resting twitch

MEP:

Motor-evoked potential

MEP50 :

MEP recorded during 50 % MVC contraction

MEPMVC :

MEP recorded during MVC

Mmax :

Peak to peak amplitude of the maximal M-wave

MVC:

Maximal voluntary contraction

RMS:

Root mean square of electromyography

rMT:

Resting motor threshold

SIT:

Superimposed twitch

SITMVC :

Superimposed twitch during MVC

TA:

Tibialis anterior muscle

TMS:

Transcranial magnetic stimulation

VATMS :

Cortical voluntary activation

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92(6):2309–2318

    Article  PubMed  Google Scholar 

  • Binder C, Kaya AE, Liepert J (2009) Vibration prolongs the cortical silent period in an antagonistic muscle. Muscle Nerve 39(6):776–780. doi:10.1002/mus.21240

    Article  PubMed  Google Scholar 

  • Bongiovanni LG, Hagbarth KE, Stjernberg L (1990) Prolonged muscle vibration reducing motor output in maximal voluntary contractions in man. J Physiol 423:15–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwer B, Ashby P (1992) Corticospinal projections to lower limb motoneurons in man. Exp Brain Res 89(3):649–654

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Hagbarth KE, Lofstedt L, Wallin BG (1976) The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol 261(3):673–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christova M, Rafolt D, Golaszewski S, Gallasch E (2011) Outlasting corticomotor excitability changes induced by 25 Hz whole-hand mechanical stimulation. Eur J Appl Physiol 111(12):3051–3059. doi:10.1007/s00421-011-1933-0

    Article  PubMed  Google Scholar 

  • Curtis DR, Eccles JC (1960) Synaptic action during and after repetitive stimulation. J Physiol 150:374–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delwaide PJ (1973) Human monosynaptic reflexes and presynaptic inhibition: an interpretation of spastic hyperreflexia. New developments in electromyography and clinical neurophysiology. Karger, Basel

    Book  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114(2):329–338

    Article  CAS  PubMed  Google Scholar 

  • Ekblom MM, Thorstensson A (2011) Effects of prolonged vibration on H-reflexes, muscle activation, and dynamic strength. Med Sci Sports Exerc 43(10):1933–1939. doi:10.1249/MSS.0b013e318217d720

    Article  PubMed  Google Scholar 

  • Eklund G, Hagbarth KE (1966) Normal variability of tonic vibration reflexes in man. Exp Neurol 16(1):80–92

    Article  CAS  PubMed  Google Scholar 

  • Fry A, Folland JP (2014) Prolonged infrapatellar tendon vibration does not influence quadriceps maximal or explosive isometric force production in man. Eur J Appl Physiol. doi:10.1007/s00421-014-2904-z

    PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    CAS  PubMed  Google Scholar 

  • Gillies JD, Lance JW, Neilson PD, Tassinari CA (1969) Presynaptic inhibition of the monosynaptic reflex by vibration. J Physiol 205(2):329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodall S, Howatson G, Romer L, Ross E (2014) Transcranial magnetic stimulation in sport science: a commentary. European journal of sport science 14(Suppl 1):S332–S340. doi:10.1080/17461391.2012.704079

    Article  PubMed  Google Scholar 

  • Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S (2013) Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience 231:384–399. doi:10.1016/j.neuroscience.2012.10.058

    Article  CAS  PubMed  Google Scholar 

  • Hayward LF, Nielsen RP, Heckman CJ, Hutton RS (1986) Tendon vibration-induced inhibition of human and cat triceps surae group I reflexes: evidence of selective Ib afferent fiber activation. Exp Neurol 94(2):333–347

    Article  CAS  PubMed  Google Scholar 

  • Herda TJ, Ryan ED, Smith AE, Walter AA, Bemben MG, Stout JR, Cramer JT (2009) Acute effects of passive stretching vs vibration on the neuromuscular function of the plantar flexors. Scand J Med Sci Sports 19(5):703–713. doi:10.1111/j.1600-0838.2008.00787.x

    Article  CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  CAS  PubMed  Google Scholar 

  • Hultborn H, Meunier S, Morin C, Pierrot-Deseilligny E (1987) Assessing changes in presynaptic inhibition of I a fibres: a study in man and the cat. J Physiol 389:729–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SW, Turner DL (2003) Prolonged muscle vibration reduces maximal voluntary knee extension performance in both the ipsilateral and the contralateral limb in man. Eur J Appl Physiol 88(4–5):380–386

    Article  PubMed  Google Scholar 

  • Konishi Y, Kubo J, Fukudome A (2009) Effects of prolonged tendon vibration stimulation on eccentric and concentric maximal torque and emgs of the knee extensors. J Sports Sci Med 8(4):548–552

    PubMed  PubMed Central  Google Scholar 

  • Kouzaki M, Shinohara M, Fukunaga T (2000) Decrease in maximal voluntary contraction by tonic vibration applied to a single synergist muscle in humans. J Appl Physiol 89(4):1420–1424

    CAS  PubMed  Google Scholar 

  • Lapole T, Canon F, Perot C (2012a) Acute postural modulation of the soleus H-reflex after Achilles tendon vibration. Neurosci Lett 523(2):154–157. doi:10.1016/j.neulet.2012.06.067

    Article  CAS  PubMed  Google Scholar 

  • Lapole T, Deroussen F, Perot C, Petitjean M (2012b) Acute effects of Achilles tendon vibration on soleus and tibialis anterior spinal and cortical excitability. Appl Physiol Nutr Metab 37(4):657–663. doi:10.1139/h2012-032

    Article  PubMed  Google Scholar 

  • Lapole T, Canon F, Perot C (2013) Ipsi- and contralateral H-reflexes and V-waves after unilateral chronic Achilles tendon vibration. Eur J Appl Physiol 113(9):2223–2231. doi:10.1007/s00421-013-2651-6

    Article  PubMed  Google Scholar 

  • McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL (2011) Behaviour of the motoneurone pool in a fatiguing submaximal contraction. J Physiol 589(Pt 14):3533–3544. doi:10.1113/jphysiol.2011.207191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil CJ, Butler JE, Taylor JL, Gandevia SC (2013) Testing the excitability of human motoneurons. Front Hum Neurosci 7:152. doi:10.3389/fnhum.2013.00152

    Article  PubMed  PubMed Central  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123(3):553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills KR (1999) Magnetic stimulation of the human nervous system. Oxford University Press, Oxford

    Google Scholar 

  • Misiaszek JE (2003) The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve 28(2):144–160

    Article  PubMed  Google Scholar 

  • Pensini M, Martin A (2004) Effect of voluntary contraction intensity on the H-reflex and V-wave responses. Neurosci Lett 367(3):369–374. doi:10.1016/j.neulet.2004.06.037

    Article  CAS  PubMed  Google Scholar 

  • Perez MA, Lungholt BK, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159(2):197–205. doi:10.1007/s00221-004-1947-5

    Article  PubMed  Google Scholar 

  • Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76(1):213–222

    Article  CAS  PubMed  Google Scholar 

  • Schieppati M (1987) The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog Neurobiol 28(4):345–376

    Article  CAS  PubMed  Google Scholar 

  • Shinohara M, Moritz CT, Pascoe MA, Enoka RM (2005) Prolonged muscle vibration increases stretch reflex amplitude, motor unit discharge rate, and force fluctuations in a hand muscle. J Appl Physiol 99(5):1835–1842. doi:10.1152/japplphysiol.00312.2005

    Article  PubMed  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106(2):556–565

    Article  PubMed  Google Scholar 

  • Steyvers M, Levin O, Van Baelen M, Swinnen SP (2003) Corticospinal excitability changes following prolonged muscle tendon vibration. Neuroreport 14(15):1901–1905. doi:10.1097/01.wnr.0000093296.63079.fa

    Article  PubMed  Google Scholar 

  • Tallent J, Goodall S, Hortobagyi T, St Clair Gibson A, French DN, Howatson G (2012) Repeatability of corticospinal and spinal measures during lengthening and shortening contractions in the human tibialis anterior muscle. PLoS One 7(4):e35930. doi:10.1371/journal.pone.0035930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JL, Gandevia SC (2008) A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol 104:542–550

    Article  PubMed  Google Scholar 

  • Temesi J, Gruet M, Rupp T, Verges S, Millet GY (2014a) Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris. J Neuroeng Rehabil 11:40. doi:10.1186/1743-0003-11-40

    Article  PubMed  PubMed Central  Google Scholar 

  • Temesi J, Rupp T, Martin V, Arnal PJ, Feasson L, Verges S, Millet GY (2014b) Central fatigue assessed by transcranial magnetic stimulation in ultratrail running. Med Sci Sports Exerc 46(6):1166–1175. doi:10.1249/MSS.0000000000000207

    Article  PubMed  Google Scholar 

  • Terao Y, Ugawa Y (2002) Basic mechanisms of TMS. J Clin Neurophysiol 19(4):322–343

    Article  PubMed  Google Scholar 

  • Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551(Pt 2):661–671. doi:10.1113/jphysiol.2003.044099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugawa Y, Terao Y, Hanajima R, Sakai K, Kanazawa I (1995) Facilitatory effect of tonic voluntary contraction on responses to motor cortex stimulation. Electroencephalogr Clin Neurophysiol 97(6):451–454

    Article  CAS  PubMed  Google Scholar 

  • Ushiyama J, Masani K, Kouzaki M, Kanehisa H, Fukunaga T (2005) Difference in aftereffects following prolonged Achilles tendon vibration on muscle activity during maximal voluntary contraction among plantar flexor synergists. J Appl Physiol 98(4):1427–1433

    Article  PubMed  Google Scholar 

  • Van Boxtel A (1986) Differential effects of low-frequency depression, vibration-induced inhibition, and posttetanic potentiation on H-reflexes and tendon jerks in the human soleus muscle. J Neurophysiol 55(3):551–568

    PubMed  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(Pt 2):591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehr PE (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86(6):455–468

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely acknowledge Dr. Léonard Féasson for conducting medical inclusions and Régis Bonnefoy for technical assistance. Robin Souron was supported by a doctoral research Grant from the University Jean Monnet of Saint Etienne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lapole.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farabet, A., Souron, R., Millet, G.Y. et al. Changes in tibialis anterior corticospinal properties after acute prolonged muscle vibration. Eur J Appl Physiol 116, 1197–1205 (2016). https://doi.org/10.1007/s00421-016-3378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3378-y

Keywords

Navigation