Skip to main content
Log in

Adipocytokine and ghrelin levels in relation to bone mineral density in prepubertal rhythmic gymnasts entering puberty: a 3-year follow-up study

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate changes in bone mineral density (BMD) in rhythmic gymnasts (RG) entering puberty and their age-matched untrained controls (UC) over the 36-month period, and associations with leptin, adiponectin and ghrelin over this period.

Methods

Whole body (WB), lumbar spine (LS) and femoral neck (FN) BMD, WB bone mineral content (BMC), and leptin, adiponectin and ghrelin were measured in 35 RG and 33 UC girls at baseline and at 12-month intervals over the next 3 years. The change over the 36 months was calculated (∆ score).

Results

The pubertal development over the next 36 months was slower in RG compard to UC, while there was no difference in bone age development between the groups. BMD at all sites was higher in RG in comparison with UC at every measurement point. ∆LS BMD and ∆FN BMD, but not ∆WB BMD and ∆WB BMC, were higher in RG compared with UC. None of the measured hormones at baseline or their ∆ scores correlated with ∆BMD and ∆BMC in RG. Baseline fat free mass correlated with ∆WB BMD and ∆WB BMC in RG, while baseline leptin was related to ∆WB BMC, ∆WB BMD and ∆LS BMD in UC.

Conclusions

Measured baseline hormones and their ∆ scores did not correlate with increases in bone mineral values in RG entering puberty. Although the pubertal development in RG was slower than in UC, high-intensity training appeared to increase BMD growth and counterbalance negative effects of slow pubertal develpment, lower fat mass and leptin in RG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMC:

Bone mineral content

BMD:

Bone mineral density

BMI:

Body mass index

FFM:

Fat free mass

FM:

Fat mass

FN:

Femoral neck

LS:

Lumbar spine

RG:

Rhythmic gymnasts

UC:

Untrained controls

WB:

Whole body

References

  • Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female. J Bone Miner Res 13:500–507

    Article  CAS  PubMed  Google Scholar 

  • Binkovitz LA, Henwood MJ (2007) Pediatric DXA: technique and interpretation. Pediatr Radiol 37:21–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Courteix D, Lespessailles E, Jaffre C, Obert P, Benhamou CL (1999) Bone mineral acquisition and somatic development in highly trained girl gymnasts. Acta Paediatr 88:803–808

    Article  CAS  PubMed  Google Scholar 

  • Courteix D, Rieth N, Thomas T (2007) Preserved bone health in adolescent elite rhythmic gymnasts despite hypoleptinemia. Horm Res 68:20–27

    Article  CAS  PubMed  Google Scholar 

  • Cure-Cure C, Capozza RF, Cointry GR, Meta M, Cure-Ramirez P, Ferretti JL (2005) Reference charts for the relationships between dual-energy X-ray absorptiometry-assessed bone mineral content and lean mass in 3,063 healthy men and premenopausal and postmenopausal women. Osteoporos Int 16:2095–2106

    Article  PubMed  Google Scholar 

  • Donoso MA, Munoz-Calvo MT, Barrios V, Garrido G, Hawkins F, Argente J (2010) Increased circulating adiponectin levels and decreased leptin/slouble leptin receptor ratio throughout puberty in female ballet dancers: association with body composition and the delay in puberty. Eur J Endocrinol 162:905–911

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos NA, Roupas ND, Theodoropoulou A, Tsekouras A, Vagenakis AG, Markou KB (2010) The influence of intensive physical training on growth and pubertal development in athletes. Ann NY Acad Sci 1205:39–44

    Article  PubMed  Google Scholar 

  • Greulich WW, Pyle SI (1959) Radiographics atlas of skeletal development of hand and wrist, 2nd edn. Stanford University Press, Stanford

    Google Scholar 

  • Gruodyté R, Jürimäe J, Cicchella A, Stefanelli C, Passariello C, Jürimäe T (2010) Adipocytokines and bone mineral density in adolescent female athletes. Acta Paediatr 99:1879–1884

    Article  PubMed  Google Scholar 

  • Gruodyte-Raciene R, Erlandson MC, Jackowski SA, Baxter-Jones ADG (2013) Structural strength development at the proximal femur in 4- to 10-year-old precompetitive gymnasts: a 4-year longitudinal hip structural analysis study. J Bone Miner Res 28:2592–2600

    Article  PubMed  Google Scholar 

  • Helge EW, Kanstrup IL (2002) Bone density in female elite gymnasts: impact of muscle strength and sex hormones. Med Sci Sports Exerc 34:174–180

    Article  PubMed  Google Scholar 

  • Ivuskans A, Lätt E, Mäestu J, Saar M, Purge P, Maasalu K, Jürimäe T, Jürimäe J (2013) Bone mineral density in 11–13-year-old boys: relative importance of the weight status and body composition factors. Rheumatol Int 33:1681–1687

    Article  PubMed  Google Scholar 

  • Jackowski SA, Baxter-Jones ADG, Gruodyte-Raciene R, Kontulainen SA, Erlandson MC (2015) A longitudinal study of bone area, content, density, and strength development at the radius and tibia in children 4–12 years of age exposed to recreational gymnastics. Osteoporos Int 26:1677–1690

    Article  CAS  PubMed  Google Scholar 

  • Jürimäe J (2010) Interpretation and application of bone turnover markers in children and adolescents. Cur Opin Pediatr 22:494–500

    Article  Google Scholar 

  • Jürimäe J (2014) Adipocytokine and ghrelin responses to acute exercise and sport training in children during growth and maturation. Pediatr Exerc Sci 26:392–403

    Article  PubMed  Google Scholar 

  • Jürimäe J, Rembel K, Jürimäe T, Rehand M (2005) Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res 37:297–302

    Article  PubMed  Google Scholar 

  • Jürimäe J, Cicchella A, Jürimäe T, Lätt E, Haljaste K, Purge P, Hamra J, von Duvillard SP (2007) Regular physical activity influences plasma ghrelin concentration in adolescent girls. Med Sci Sports Exerc 39:1736–1741

    Article  PubMed  Google Scholar 

  • Jürimäe J, Lätt E, Haljaste K, Purge P, Cicchella A, Jürimäe T (2010) A longitudinal assessment of ghrelin and bone mineral density with advancing pubertal maturation in adolescent female athletes. J Sports Med Phys Fit 50:343–349

    Google Scholar 

  • Jürimäe J, Mäestu J, Jürimäe T, Mangus B, von Duvillard SP (2011) Peripheral signals of energy homeostasis as possible markers of training stress in athletes: a review. Metab Clin Exp 60:335–650

    Article  PubMed  Google Scholar 

  • Lorentzon M, Landin K, Mellström D, Ohlsson C (2006) Leptin is a negative independent predictor of areal BMD and cortical bone size in young adult Swedish men. J Bone Miner Res 21:1871–1878

    Article  CAS  PubMed  Google Scholar 

  • MacKelvie KJ, Khan KM, McKay HA (2002) Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review. Br J Sports Med 36:250–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maimoun L, Coste O, Jaussen A, Mariano-Goulart D, Sultan C, Paris F (2010) Bone mass acquisition in female rhythmic gymnasts during puberty: no direct role for leptin. Clin Endocrinol 72:604–611

    Article  CAS  Google Scholar 

  • Maimoun L, Coste O, Mura T, Philibert P, Galtier F, Mariano-Goulart D, Paris F, Sultan C (2013) Specific bone mass acquisition in elite female athletes. J Clin Endocrinol Metab 98:2844–2853

    Article  CAS  PubMed  Google Scholar 

  • Makovey J, Naganathan V, Seibel M, Sambrook P (2007) Gender differences in plasma ghrelin and its relation to body composition and bone—an opposite-sex twin study. Clin Endocrinol 66:530–537

    CAS  Google Scholar 

  • Matsudo SMM, Matsudo VKR (1994) Self-assessment and physician assessment of sexual maturation in Brazilian boys and girls: concordance and reproducibility. Am J Hum Biol 6:451–455

    Article  Google Scholar 

  • Misra M, Miller KK, Stewart V, Hunter E, Kuo K, Herzog DB, Klibanski A (2005) Ghrelin and bone metabolism in adolescent girls with anorexia nervosa and healthy adolescents. J Clin Endocrinol Metab 90:5082–5087

    Article  CAS  PubMed  Google Scholar 

  • Misra M, Miller KK, Cord J, Prabhakaran R, Herzog DB, Goldstein M, Katzman DK, Klibanski A (2007) Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab 92:2046–2052

    Article  CAS  PubMed  Google Scholar 

  • Moon SS (2014) Relationship of lean body mass with bone mass and bone mineral density in the general Korean population. Endocrine 47:234–243

    Article  CAS  PubMed  Google Scholar 

  • Munoz MT, de la Piedra C, Barrios V, Garrido G, Argente J (2004) Changes in bone density and bone markers in rhythmic gymnasts and ballet dancers: implications for puberty and leptin levels. Eur J Endocrinol 151:491–496

    Article  CAS  PubMed  Google Scholar 

  • Nickols-Richardson SM, O´Connor PJ, Shapses SA, Lewis RD (1999) Longitudinal bone mineral changes in female child artistic gymnasts. J Bone Miner Res 14:994–1002

    Article  CAS  PubMed  Google Scholar 

  • Pacifico L, Anania C, Poggiogalle E, Osborn JF, Prossomariti G, Martino F, Chiesa C (2009) Relationships of acylated and des-acyl ghrelin levels to bone mineralization in obese children and adolescents. Bone 45:274–279

    Article  CAS  PubMed  Google Scholar 

  • Parm AL, Jürimäe J, Saar M, Pärna K, Tillmann V, Maasalu K, Neissaar I, Jürimäe T (2011) Plasma adipocytokine and ghrelin levels in relation to bone mineral density in prepubertal rhythmic gymnasts. J Bone Miner Metab 29:717–724

    Article  CAS  PubMed  Google Scholar 

  • Parm AL, Jürimäe J, Saar M, Pärna K, Tillmann V, Maasalu K, Neissaar I, Jürimäe T (2012) Bone mineralization in rhythmic gymnasts before puberty: no longitudinal associations with adipocytokine and ghrelin levels. Horm Res Paediatr 77:369–375

    Article  CAS  PubMed  Google Scholar 

  • Reid IR (2002) Relationships among body mass, its compartments, and bone. Bone 31:547–555

    Article  CAS  PubMed  Google Scholar 

  • Remmel L, Tillmann V, Mäestu J, Purge P, Saar M, Lätt E, Maasalu K, Jürimäe T, Jürimäe J (2015) Associations between bone mineral characteristics and serum levels of ghrelin and peptide YY in overweight adolescent boys. Horm Res Paediatr 84:6–13

    Article  CAS  PubMed  Google Scholar 

  • Rhie YL, Lee KH, Chung SC, Kim HS, Kim DH (2010) Effects of body composition, leptin, and adiponectin on bone mineral density in prepubertal girls. J Korean Med Sci 25:1187–1190

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and elderly. Bone 46:294–305

    Article  PubMed  Google Scholar 

  • Roemmich JN, Clark PA, Mantzoros CS, Gurgol CM, Weltman A, Rogol AD (2003) Relationship of leptin to bone mineralization in children and adolescents. J Clin Endocrinol Metab 88:599–604

    Article  CAS  PubMed  Google Scholar 

  • Sayers A, Timpson NJ, Sattar N, Deanfield J, Hingorani AD, Davey-Smith G, Tobias JH (2010) Adiponectin and its association with bone mass accrual in childhood. J Bone Miner Res 25:2212–2220

    Article  CAS  PubMed  Google Scholar 

  • Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston CC Jr (1994) Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr 125:201–207

    Article  CAS  PubMed  Google Scholar 

  • Tanner J (1962) Growth at adolescence, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Theintz G, Buchs B, Rizzoli R, Slosman D, Calvien H, Sizonenko PC, Bonjour JP (1992) Longitudinal monitoring of bone mass accumulation in healthy adolescence: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 75:1060–1065

    CAS  PubMed  Google Scholar 

  • Võsoberg K, Tillmann V, Tamm AL, Jürimäe T, Saar M, Maasalu K, Neissaar I, Lätt E, Jürimäe J (2014) Adipocytokine and ghrelin levels in relation to body composition in rhythmic gymnasts entering into puberty: a three-year follow-up study. Pediatr Exerc Sci 26:477–484

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Estonian Ministry of Education and Science Institutional Grant IUT 20-58.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaak Jürimäe.

Additional information

Communicated by Olivier Seynnes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Võsoberg, K., Tillmann, V., Tamm, AL. et al. Adipocytokine and ghrelin levels in relation to bone mineral density in prepubertal rhythmic gymnasts entering puberty: a 3-year follow-up study. Eur J Appl Physiol 116, 831–839 (2016). https://doi.org/10.1007/s00421-016-3338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3338-6

Keywords

Navigation