Skip to main content
Log in

Complementary activation of the ipsilateral primary motor cortex during a sustained handgrip task

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Near-infrared spectroscopy (NIRS) can be used to examine bilateral motor cortex activation during a sustained motor task in brain areas where increased oxygenation reflects cortical activation. This study examines the time course of activation of the bilateral motor cortex during a moderate-intensity handgrip task.

Methods

Ten healthy right-handed male subjects participated in this study. Functional NIRS probes were placed over the cortex to measure motor cortical activations while the subjects performed a 180-s handgrip task incrementally [30–60 % of the maximal voluntary contraction (MVC) at 0.17 % increase/s]

Results

Contralateral primary motor cortex (ContraM1) oxygenation values significantly increased from baseline between 40 and 120 s after the start of the motor task (p < 0.05). Moreover, the ipsilateral primary motor cortex (IpsiM1) oxygenation values significantly increased from baseline between 140 and 180 s after the start of the motor task (p < 0.05). IpsiM1 oxygenation gradually increased from 140 to 180 s, whereas ContraM1 oxygenation gradually decreased from 120 to 180 s after the start of the motor task.

Conclusion

These results suggest that the complementary functions of IpsiM1 become activated in response to the working of the ContraM1 during a continuous handgrip task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAR:

Common average reference

CST:

Corticospinal tract

EEG:

Electroencephalography

fMRI:

Functional magnetic resonance imaging

Hb:

Deoxyhemoglobin

HbO2 :

Oxyhemoglobin

M1:

Primary motor cortex

MVC:

Maximal voluntary contraction

NIRS:

Near-infrared spectroscopy

References

  • Bertrand O, Perrin F, Pernier J (1985) A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalogr Clin Neurophysiol 62:462–464

  • Blanchard G, Blankertz B (2004) BCI competition 2003: data set IIa—spatial patterns of self-controlled brain rhythm modulations. IEEE Trans Biomed Eng 51:1062–1066

    Article  PubMed  Google Scholar 

  • Chance B, Zhuang Z, UnAh C, Alter C, Lipton L (1985) Cognition-activated low-frequency modulation of light absorption in human brain. Proc Natl Acad Sci USA 90:3770–3774

    Article  Google Scholar 

  • Chen R, Yung D, Li J-Y (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264

    Article  PubMed  Google Scholar 

  • Cheng M, Jia W, Gao X, Gao S, Yang F (2004) Mu rhythm-based cursor control: an offline analysis. Clin Neurophysiol 115:745–751

    Article  PubMed  Google Scholar 

  • Colier WNJM, Quaresima V, Barattelli G, Cavallari P, van der Sluijis M, Ferrari M (1997) Detailed evidence of cerebral hemoglobin oxygenation changes in response to motor cortical activation revealed by a continuous wave spectrophotometer with 10 Hz temporal resolution. Proc SPIE 2979:390–396

    Article  CAS  Google Scholar 

  • Colier WNJM, Quaresima V, Oeseburg B, Ferrari M (1999) Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot. Exp Brain Res 129:457–461

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Bray S, Reiss AL (2010) Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. NeuroImage 49(4):3039–3046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai TH, Liu JZ, Sahgal V, Brown RW, Ue GH (2001) Relationship between muscle output and functional MRI-measured brain activation. Exp Brain Research 140:290–300

    Article  CAS  Google Scholar 

  • Dalasgaard MK, Ogoh S, Dawson EA, Yoshiga CC, Quistorff B, Secher NH (2004) Cerebral carbohydrate cost of physical exertion in humans. Am J Physiol Regul Integr Comp Physiol 287:R534–R540

    Article  Google Scholar 

  • Davare M, Duque J, Vandermeeren Y, Thonnard JL, Olivier E (2007) Role of the ipsilateral primary motor cortex in controlling the timing of hand muscle recruitment. Cereb Cortex 17:353–362

    Article  PubMed  CAS  Google Scholar 

  • Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J (1988) Estimation of optical path length through tissue from direct time of flight measurement. Phys Med Biol 33:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Derosière G, Alevandere F, Bourdillon N, Mandrick K, Ward TE, Perrey S (2014) Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation. NeuroImage 85:141–147

    Article  Google Scholar 

  • Edgley SA, Winter AP (2004) Different effects of fatiguing exercise on corticospinal and transcallosal excitability in human hand area motor cortex. Exp Brain Res 159:530–536

    Article  PubMed  CAS  Google Scholar 

  • Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536

    PubMed  CAS  Google Scholar 

  • Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT, Reynolds EOR (1994) Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J Appl Physiol 77:2753–2760

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somato-sensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    Article  PubMed  CAS  Google Scholar 

  • Friman O, Borga M, Lundberg P, Knutsson H (2002a) Exploratory fMRI analysis by autocorrelation maximization. NeuroImage 16:454–464

    Article  PubMed  Google Scholar 

  • Friman O, Borga M, Lundberg P, Knutsson H (2002b) Detection of neural activity in fMRI using maximum correlation modeling. NeuroImage 15:386–395

    Article  PubMed  Google Scholar 

  • Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100:328–335

    Article  PubMed  CAS  Google Scholar 

  • Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Fraham J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16:817–826

    Article  PubMed  CAS  Google Scholar 

  • Liu JZ, Shan ZY, Zhan LD, Sahgal V, Brown RW, Yue GH (2003) Human brain activation during sustained and intermittent submaximal fatigue muscle contractions; an fMRI study. J Neurophysiol 90:300–312

    Article  PubMed  Google Scholar 

  • Liu ZJ, Lewandouski B, Karakasis C, Yao B, Siemionow V, Sahgal V, Yue GH (2007) Shifting of activation center in the brain during muscle fatigue: an explanation of minimal central fatigue. NeuroImage 35:299–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Nybo L, Nielsen B (2001) Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J Physiol 534:279–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nybo L, Moller K, Voliantis S, Neilsen HB, Secher NH (2002) Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol 93:58–64

    Article  PubMed  Google Scholar 

  • Obrig H, Villringer A (2003) Beyond the visible–imaging the human brain with light. J Cereb Blood Flow Metab 23:1–18

    Article  PubMed  Google Scholar 

  • Obrig H, Wenzel R, Kohl M, Horst S, Wobst P, Steinbrink J, Villringer A (2000) Near-infrared spectroscopy: does it function in functional activation studies of the adult brain? Int J Psychophysiol 35:125–142

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

  • Perrey S (2008) Non-invasive NIR spectroscopy of human brain function during exercise. Methods 45:289–299

    Article  PubMed  CAS  Google Scholar 

  • Shibusawa M, Takeda T, Nakajima K, Ishigami K, Sakatani K (2009) Functional near-infrared spectroscopy study on primary motor and sensory cortex response to clenching. Neurosci Lett 449:98–102

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Kuboyama N, Tanaka J (2014) Changes in ipsilateral motor cortex activity during a unilateral isometric finger task are dependent on the muscle contraction force. Physiol Meas 35:417–428

    Article  PubMed  Google Scholar 

  • Shibuya K, Kuboyama N (2007) Human motor cortex oxygenation during exhaustive pinching motor task. Brain Res 1156:120–124

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Sadamoto T, Sato K, Moriyama M, Iwadate M (2008) Quantification of delayed oxygenation in ipsilateral primary motor cortex compared with contralateral side during a unimanual dominant-hand motor task using near-infrared spectroscopy. Brain Res 1210:142–147

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Watanabe Y (2011) Neural compensation mechanisms to regulate motor output during physical fatigue. Brain Res 1395:46–52

    Article  PubMed  CAS  Google Scholar 

  • Utsugi K, Obata A, Sato H, Katsura T, Sagara K, Maki A, Koizumi H (2007). Development of an optical brain-machine interface. Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society, conference, pp 5338–5341

  • van Wijk BCM, Beek PJ, Daffertshofer A (2012) Differential modulations of ipsilateral and contralateral beta (de)synchronization during unimanual force production. Eur J Neurosci 36:2088–2097

    Article  PubMed  Google Scholar 

  • Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:435–442

  • Zhang Q, Brown EN, Strangman GE (2009) Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work? Neuroimage 10:12–064009

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by a Grant-in-Aid for Young Scientists (B, No. 21700641) from the Japan Society for the Promotion of Science (N.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Shibuya.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibuya, K., Kuboyama, N. & Yamada, S. Complementary activation of the ipsilateral primary motor cortex during a sustained handgrip task. Eur J Appl Physiol 116, 171–178 (2016). https://doi.org/10.1007/s00421-015-3262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3262-1

Keywords

Navigation