Skip to main content
Log in

The training and detraining effect of high-intensity interval training on post-exercise hypotension in young overweight/obese women

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Studies evaluating the response in blood pressure (BP) following high-intensity interval training (HIIT) are scant even though there has been extensive work done on the BP response following acute and chronic low- to moderate-intensity aerobic and resistance exercise in both hypertensive and normotensive individuals. The present study sought to investigate the training and detraining effects of short-term HIIT on the post-exercise hypotension (PEH) response in overweight/obese young women.

Method

Twenty young untrained women volunteered for the study. Participants performed six HIIT sessions on a treadmill within 2 weeks (week 1: 10 × 1 min and week 2: 15 × 1 min intervals at 90–95 % HRmax, separated by 1 min active recovery at 70 % HRmax each session) and detrained for 2 weeks. Post-exercise BP was measured for 1 h following the first and last HIIT sessions.

Results

Participants were normotensive (SBP: 119.2 ± 5.60 mmHg; DBP: 78.8 ± 4.12 mmHg) and had a BMI greater than 25 kg m−2. The magnitude of the systolic hypotensive response was slightly greater after the six sessions HIIT compared to pre-training (5.04 and 4.28 mmHg, respectively), and both would be considered clinically significant (>3 mmHg decrease). After 2 weeks, detraining the PEH response was not clinically significant (1.08 mmHg decrease). The magnitude of the DBP response was only clinically significant following post- and detraining (4.26 and 3.87 mmHg, respectively).

Conclusion

The findings suggest that six HIIT sessions is sufficient to affect clinically significant PEH responses in young, overweight/obese women; however, the training effects are lost within 2 weeks of detraining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

b.min−1 :

Beats per minute

BMI:

Body mass index

BP:

Blood pressure

cm:

Centimeter

DBP:

Diastolic blood pressure

ES:

Effect size

HIIT:

High-intensity interval training

HR:

Heart rate

HRmax :

Maximum heart rate

i.e.:

That is

kg:

Kilogram

Kg m−2 :

Kilogram per square meter

min:

Minute

ml kg−1 min−1 :

Milliliters per kilogram body weight per minute

mmHg:

Millimeters mercury

PAR-Q:

Physical activity readiness questioner

PEH:

Post-exercise hypotension

SBP:

Systolic blood pressure

SD:

Standard deviation

Sec:

Second

TPR:

Total peripheral resistance

VO2max :

Maximal aerobic capacity

References

  • American College of Sports Medicine (2010) ACSM’S guidelines for exercise testing and prescription, 8th edn. Lippincott Williams & Wilkens, Philadelphia, pp 165–171

    Google Scholar 

  • American Heart Association (1999). Dallas TX. Heart and Stroke Statistical Update

  • Bennett T, Wilcox RG, Macdonald IA (1984) Post-exercise reduction of blood pressure in hypertensive men is not due to acute impairment of baroreflex function. Clin Sci 67(1):97–103

    Article  PubMed  CAS  Google Scholar 

  • Brandão Rondon MUP, Alves MJNN, Braga AMFW, Teixeira OTUN, Barretto ACP, Krieger EM, Negrão CE (2002) Postexercise blood pressure reduction in elderly hypertensive patients. J Am Coll Cardiol 39(4):676–682

    Article  PubMed  Google Scholar 

  • Brownley KA, West SG, Hinderliter AL, Light KC (1996) Acute aerobic exercise reduces ambulatory blood pressure in borderline hypertensive men and women. Am J Hypertens 9(3):200–206

    Article  PubMed  CAS  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, Mcgee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cardoso JCG, Gomides RS, Queiroz ACC, Pinto LG, Lobo FS, Tinucci T, Mion JD, Forjaz CLM (2010) Acute and chronic effects of aerobic and resistance exercise on ambulatory blood pressure. Clinics 65(3):317–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan HH, Burns SF (2013) Oxygen consumption, substrate oxidation and blood pressure following sprint interval exercise. Appl Physiol Nutr Metab 38(2):182–187

    Article  PubMed  CAS  Google Scholar 

  • Ciolac EG, Bocchi EA, Bortolotto LA, Carvalho VO, Greve JMD, Guimarães GV (2010) Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertens Res 33:836–843

    Article  PubMed  CAS  Google Scholar 

  • Cléroux J, Kouamé N, Nadeau A, Coulombe D, Lacourcière Y (1992) Aftereffects of exercise on regional and systemic hemodynamics in hypertension. Hypertension 19(2):183–191

    Article  PubMed  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112:155–159

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen VA, Verheyden B, Aubert AE, Fagard RH (2010) Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. J Hum Hypertens 24:175–182

    Article  PubMed  CAS  Google Scholar 

  • Cote AT, Bredin SSD, Phillips AA, Koehle MS, Warburton DER (2014) Greater autonomic modulation during post-exercise hypotension following high-intensity interval exercise in endurance-trained men and women. Eur J Appl Physiol. doi:10.1007/s00421-014-2996-5

    PubMed  Google Scholar 

  • Dipla K, Nassis GP, Vrabas IS (2012) Blood pressure control at rest and during exercise in obese children and adults. J Obes 2012:1–10. doi:10.1155/2012/147385

    Article  Google Scholar 

  • Eicher JD, Maresh CM, Tsongalis GJ, Thompson PD, Pescetello LS (2010) The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. Hypertension 160:513–520

    Google Scholar 

  • Floras JS, Wesche J (1992) Haemodynamic contributions to post-exercise hypotension in young adults with hypertension and rapid resting heart rates. J Hum Hypertens 6:265–269

    PubMed  CAS  Google Scholar 

  • Floras JS, Sinkey CA, Aylward PE, Seals DR, Thoren PN, Mark AL (1989) Postexercise hypotension and sympathoinhibition in borderline hypertensive men. Hypertension 14:28–35

    Article  PubMed  CAS  Google Scholar 

  • Forjaz CLM, Matsudaira Y, Rodrigues FB, Nunes CE, Negrao CE (1998) Post-exercise changes in blood pressure, heart rate and rate product at different exercise intensities in normotensive humans. Braz J Med Biol Res 31:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Forjaz CLM, Tinucci T, Ortega KC, Santaella DF, Mion D, Negrão CE (2000) Factors affecting post-exercise hypotension in normotensive and hypertensive humans. Blood Press Monit 5:255–262

    Article  PubMed  CAS  Google Scholar 

  • Forjaz CL, Cardoso CGJ, Rezk CC, Santaella DF, Tinucci T (2004) Postexercise hypotension and hemodynamics: the role of exercise intensity. J Sports Med Phys Fit 44:54–62

    CAS  Google Scholar 

  • Guidry MA, Blanchard BE, Thompson PD, Maresh CM, Seip RL, Taylor AL, Pescatello LS (2006) The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise. Am Heart J 151:1322.e5–1322.e12

  • Hagberg JM, Montain SJ, Martin WH (1987) Blood pressure and hemodynamic responses after exercise in older hypertensives. J Appl Physiol 63(1):270–276

    PubMed  CAS  Google Scholar 

  • Hamer M, Boutcher SH (2006) Impact of moderate overweight and body composition on postexercise hemodynamic responses in healthy men. J Hum Hypertens 20:612–617

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Floras JS (1994) Influence of naloxone on muscle sympathetic nerve activity, systemic and calf haemodynamics and ambulatory blood pressure after exercise in mild essential hypertension. J Hypertens 13:447–461

    Google Scholar 

  • Hoffman J (2006) Norms for fitness, performance, and health. Human Kinetics, USA

    Google Scholar 

  • Hua LPT, Brown CA, Hains SJM, Godwin M, Parlow JL (2009) Effects of low-intensity exercise conditioning on blood pressure, heart rate, and autonomic modulation of heart rate in men and women with hypertension. Biol Res Nurs 11(2):129–143

    Article  PubMed  Google Scholar 

  • Kannel WB (1999) Historic perspective on the relative contributions of the diastolic and systolic blood pressure evaluation to cardiovascular risk profile. Am Heart J 138:S205–S210

    Article  Google Scholar 

  • Kaplan NM (2000) New issues in the treatment of isolated systolic hypertension. Circulation 102:1079–1081

    Article  PubMed  CAS  Google Scholar 

  • Keese F, Farinatti P, Pescatello L, Cunha FA, Monteiro WD (2012) Aerobic exercise intensity influences hypotension following concurrent exercise sessions. Int J Sport Med 33:148–153

    Article  CAS  Google Scholar 

  • Kemi OJ, Wisløff U (2010) High-intensity aerobic exercise training improves the heart in health and disease. J Cardiopulm Rehabil Prev 30(1):2–11

    Article  PubMed  Google Scholar 

  • Kenney MJ, Seals DR (1993) Postexercise hypotension. Key features, mechanisms and clinical significance. Hypertension 22:653–664

    Article  PubMed  CAS  Google Scholar 

  • Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    PubMed  CAS  Google Scholar 

  • Liu S, Thomas SG, Sasson Z, Banks L, Busato M, Goodman JM (2012) Blood pressure reduction following prolonged exercise in young and middle-aged endurance athletes. Eur J Prev Cardiol 20:1–7

    Google Scholar 

  • Marfell-Jones M, Olds T, Stewart A, Carter L (2006) International Standards for Anthropometric Assessment. ISAA

  • Meredith IT, Jennings GL, Esler MD, Dewar EM, Bruce AM, Fazio VA, Korner PI (1990) Time-course of the antihypertensive and autonomic effects of regular endurance exercise in human subjects. J Hypertens 8:859–866

    Article  PubMed  CAS  Google Scholar 

  • Millen AME, Norton GR, Avidon I, Woodiwiss AJ (2013) Effects of short-term exercise-training on aortic systolic pressure augmentation in overweight and obese individuals. Eur J Appl Physiol 113:1793–1803

    Article  PubMed  Google Scholar 

  • Morrow JR, Krzewinski-Malone J, Jackson AW, Bungun TJ, Fitzgerald SJ (2004) American adults’ knowledge of exercise recommendation. Res Q Exerc Sport 75(3):231–237

    Article  PubMed  Google Scholar 

  • Nybo L, Sundstrup E, Jakobsen MD, Mohr M, Hornstrup T, Simonsen L, Bülow J, Randers MB, Nielsen JJ, Aagaard P, Krustrup P (2010) High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sport Exerc 42(10):1951–1958

    Article  Google Scholar 

  • Pescatello LS, Kulikowich JM (2001) The after-effects of dynamic exercise on ambulatory blood pressure. Med Sci Sport Exerc 33(11):1855–1861

    Article  CAS  Google Scholar 

  • Pescatello LS, Fargo AE, Leach CN, Scherzer JR, Scherzer HH (1991) Short-term effect of dynamic exercise on arterial blood pressure. Circulation 83:1557–1561

    Article  PubMed  CAS  Google Scholar 

  • Pescatello LS, Miller B, Danias PG, Werner M, Hess M, Baker C, De Souza MJ (1999) Dynamic exercise normalizes resting blood pressure in mildly hypertensive premenopausal women. Am Heart J 138(5):916–921

    Article  PubMed  CAS  Google Scholar 

  • Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004) American College of Sports Medicine’s Position Stand. Exercise and hypertension. Med Sci Sport Exerc 36(3):533–553

  • Pescatello LS, Turner D, Rodriguez N, Blanchard BE, Tsongalis GJ, Maresh CM, Duffy V, Thompson PD (2007) Dietary calcium intake and renin angiotensin system polymorphisms alter the blood pressure response to aerobic exercise: a randomized control design. Nutr Metab 4:1–10

    Article  Google Scholar 

  • Piepoli M, Isea JE, Pannarale G, Adamopoulos S, Sleight P, Coats AJ (1994) Load dependence of changes in forearm and peripheral vascular resistance after acute leg exercise in man. J Physiol 478:357–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinn TJ (2000) Twenty-four hour, ambulatory blood pressure responses following acute exercise: impact of exercise intensity. J Hum Hypertens 14(9):547–553

    Article  PubMed  CAS  Google Scholar 

  • Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, Macdonald MJ (2008) Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol 295:R236–R242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rossow L, Yan H, Fahs CA, Ranadive SM, Agiovlasitis S, Wilund KR, Baynard T, Fernhall B (2010) Postexercise hypotension in an endurance-trained population of men and women following high-intensity interval and steady-state cycling. Am J Hypertens 23:358–367

    Article  PubMed  Google Scholar 

  • Simão R, Fleck SJ, Polito M, Monteiro W, Farinatti P (2005) Effects of resistance training intensity, volume, and session format on the postexercise hypotensive response. J Strength Cond Res 19(4):853–858

    PubMed  Google Scholar 

  • Stuckey MI, Tordi N, Mourot L, Gurr LJ, Rakobowchuk MP, Millar J, Toth R, Macdonald MJ, Kamath MV (2011) Autonomic recovery following sprint interval exercise. Scand J Med Sci Sport 22(6):756–763

    Article  Google Scholar 

  • Teixeira L, Ritti-Dias RM, Tinucci T, Mion D, Forjaz CLM (2011) Post-concurrent exercise hemodynamics and cardiac autonomic modulation. Eur J Appl Physiol 111(9):2069–2078

    Article  PubMed  Google Scholar 

  • Tjønna AE, Stølen TO, Bye A, Volden M, Slørdahl SA, Odegård R, Skogvoll E, Wisløff U (2009) Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin Sci 116:317–326

    Article  PubMed  Google Scholar 

  • Touyz RM, Campbell N, Logan A, Gledhill N, Petrella R, Padwal R (2004) The 2004 Canadian recommendations for the management of hypertension: part III – Lifestyle modifications to prevent and control hypertension. Can J Cardiol 20(1):55–59

    PubMed  CAS  Google Scholar 

  • Whelton SP, Chin A, Xin X, He J (2002) Effect of aerobic exercise on blood pressure: a meta-analysis of randomized control trial. Ann Intern Med 136:493–503

    Article  PubMed  Google Scholar 

  • Whyte JL, Gill JMR, Cathcart AJ (2010) Effect of 2 week of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metab, Clin Exp 59:1421–1428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the volunteers who sacrificed their time out from their busy schedules, their interest, and commitment in this study. This research was supported by a grant from Kwame Nkrumah University of Science and Technology. Biggie Bonsu is currently at the Department of Sports and Exercise Science, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi Ghana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biggie Bonsu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonsu, B., Terblanche, E. The training and detraining effect of high-intensity interval training on post-exercise hypotension in young overweight/obese women. Eur J Appl Physiol 116, 77–84 (2016). https://doi.org/10.1007/s00421-015-3224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3224-7

Keywords

Navigation