Skip to main content

Advertisement

Log in

Two nights of sleep deprivation with or without energy restriction does not impair the thermal response to cold

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

In persons completing exhaustive daily exercise, sleep and energy restriction have been highlighted as risk factors for hypothermia in cold environments. The present study therefore sought to determine the effect of sleep deprivation (SDEP), with and without energy restriction, on the thermal response to cold.

Methods

In a random order, ten recreationally active men (mean ± SD: age 25 ± 6 years, body fat 17 ± 5 %) completed three 53 h trials: a control (CON: 436 min/night sleep), SDEP (0 min sleep), and sleep deprivation and energy restriction (SDEP + ER: 0 min sleep and 10 % daily energy requirements). Exhaustive exercise was completed after 5 and 29 h. After 53 h participants completed a semi-nude seated cold air test (CAT, 0 °C), for 4 h or until rectal core temperature (T re) reached 36 °C.

Results

Two nights of sleep and energy restriction did not impair the thermal response to cold (T re, CON 36.15 ± 0.20 °C, SDEP 36.30 ± 0.15 °C, SDEP + ER 36.25 ± 0.20 °C, P = 0.25). Rewarming was also similar as indicated by 1 h post-CAT T re (P = 0.78). In contrast, perceived thermal discomfort during the initial hour of the CAT tended to be greater after SDEP and SDEP + ER (P ≤ 0.1).

Conclusion

Sleep and energy restriction, at least as evaluated within this experiment, should be considered minimal risk factors for hypothermia. The greater perception of cold discomfort at the same body temperature suggests that sleep and energy restriction may actually reduce cold injury risk, as people are likely to engage earlier in normal behavioral cold adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

A D :

Body surface area

CAT:

Cold air test

CON:

Control trial

EDTA:

Ethylenediaminetetraacetic acid

ER:

Energy restriction

M :

Metabolic heat production

Mean T sk :

Mean skin temperature

RER:

Respiratory exchange ratio

RPE:

Ratings of perceived exertion

SDEP:

Sleep deprivation

SDEP + ER:

Sleep deprivation and energy restriction

T bicep :

Bicep skin temperature

T calf :

Calf skin temperature

T chest :

Chest skin temperature

T re :

Rectal core temperature

T thigh :

Thigh skin temperature

RH:

Relative humidity

VO2 :

Oxygen uptake

VO2max :

Maximal oxygen uptake

References

  • Ancoli-Israel S, Cole R, Alessi C et al (2003) The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26:342–392

    PubMed  Google Scholar 

  • Caine-Bish NL, Potkanowicz ES, Otterstetter R, Glickman EL (2004) Thermal and metabolic responses of sleep deprivation of humans during acute cold exposure. Aviat Space Environ Med 75:964–968

    PubMed  Google Scholar 

  • Cappaert TA, Stone JA, Castellani JW et al (2008) National Athletic Trainers’ Association position statement: environmental cold injuries. J Athl Train 43:640–658

    Article  PubMed Central  PubMed  Google Scholar 

  • Castellani JW, Stulz DA, Degroot DW et al (2003) Eighty-four hours of sustained operations alter thermoregulation during cold exposure. Med Sci Sports Exerc 35:175–181

    Article  PubMed  Google Scholar 

  • Castellani JW, Young AJ, Ducharme MB et al (2006) American College of Sports Medicine position stand: prevention of cold injuries during exercise. Med Sci Sport Exerc 38:2012–2029

    Article  Google Scholar 

  • Chen AC, Rappelsberger P, Filz O (1998) Topology of EEG coherence changes may reflect differential neural network activation in cold and pain perception. Brian Topogr 11:125–132

    Article  CAS  Google Scholar 

  • Chudalla R, Baerwalde S, Schneider G, Maassen N (2006) Local and systemic effects on blood lactate concentration during exercise with small and large muscle groups. Pflugers Arch 452:690–697

    Article  CAS  PubMed  Google Scholar 

  • Compher C, Frankenfield D, Keim N, Roth-Yousey L (2006) Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc 106:881–903

    Article  PubMed  Google Scholar 

  • Consolazio CF, Johnson RE, Pecora LJ (1963) Physiological variability in young men. Physiol Meas Metab Funct man. McGraw Hill, New York, pp 453–480

  • Costa RJS, Smith AH, Oliver SJ et al (2010) The effects of two nights of sleep deprivation with or without energy restriction on immune indices at rest and in response to cold exposure. Eur J Appl Physiol 109:417–428

    Article  PubMed  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma and red-cells in dehydration. J Appl Physiol 37:247–248

    CAS  PubMed  Google Scholar 

  • Esmat TA, Clark KE, Muller MD, Juvancic-Heltzel JA, Glickman EL (2012) Fifty-three hours of total sleep deprvation has no effect on rewarming from cold air exposure. Wilderness Environ Med 23:349–355

    Article  PubMed  Google Scholar 

  • Fellows IW, Macdonald IA, Bennett T, Allison SP (1985) The effect of undernutrition on thermoregulation in the elderly. Clin Sci 69:525–532

    Article  CAS  PubMed  Google Scholar 

  • Fiorica V, Higgins E, Iampietro P et al (1968) Physiological responses during sleep deprivation of men. J Appl Physiol 24:167–176

    CAS  PubMed  Google Scholar 

  • Frank SM, Raja SN, Bulcao C, Goldstein DS (2000) Age-related thermoregulatory differences during core cooling in humans. Am J Physiol Regul Integr Comp Physiol 279:R349–R354

    CAS  PubMed  Google Scholar 

  • Gagge AP, Gonzalez R (1996) Mechanisms of heat exchange: biophysics and physiology. In: Fregly MJ, Blatteis CM (eds) Handb Physiol Sect. 4, Environ Physiol. Oxford University Press, New York, pp 45–85

  • Gale EAM, Bennett T, Green JH, Macdonald IA (1981) Hypoglycaemia, hypothermia and shivering in man. Clin Sci 61:463–469

    Article  CAS  PubMed  Google Scholar 

  • Glickman-Weiss EL, Nelson AG, Hearon CM et al (1994) The thermogenic effect of a carbohydrate feeding during exposure to 8, 12 and 27C. Eur J Appl Physiol Occup Physiol 68:291–297

    Article  CAS  PubMed  Google Scholar 

  • Haman F, Peronnet F, Kenny GP et al (2002) Effect of cold exposure on fuel utilization in humans: plasma glucose, muscle glycogen and lipids. J Appl Physiol 93:77–84

    Article  CAS  PubMed  Google Scholar 

  • Haman F, Peronnet F, Kenny GP et al (2004) Effects of carbohydrate availability on sustained shivering I. Oxidation of plasma glucose, muscle glycogen, and proteins. J Appl Physiol 96:32–40

    Article  CAS  PubMed  Google Scholar 

  • Hollies NRS, Goldman RF (1977) Clothing comfort: interaction of thermal, ventilation, construction, and assessment factors. 112

  • Landis CA, Savage MV, Lentz MJ, Brengelmann GL (1998) Sleep deprivation alters body temperature dynamics to mild cooling and heating not sweating threshold in women. Sleep 21:101–108

    CAS  PubMed  Google Scholar 

  • Macdonald IA, Bennett T, Sainsbury R (1984) The effect of a 48 h fast on the thermoregulatory responses to graded cooling in man. Clin Sci 67:445–452

    Article  CAS  PubMed  Google Scholar 

  • Mansell PI, Macdonald IA (1989) Effects of underfeeding and of starvation on thermoregulatory responses to cooling in women. Clin Sci 77:245–252

    Article  CAS  PubMed  Google Scholar 

  • Mansell PI, Fellows IW, Macdonald IA, Allison SP (1990) Defect in thermoregulation in malnutrition reversed by weight gain. Physiological mechanisms and clinical importance. Q J Med 76:817–829

    CAS  PubMed  Google Scholar 

  • Moran DS, Heled Y, Shani Y, Epstein Y (2003) Hypothermia and local cold injuries in combat and non-combat situations–the Israeli experience. Aviat Space Environ Med 74:281–284

    PubMed  Google Scholar 

  • Oliver SJ, Laing SJ, Wilson S et al (2007) Endurance running performance after 48 h of restricted fluid and/or energy intake. Med Sci Sport Exerc 39:316–322

    Article  Google Scholar 

  • Oliver SJ, Costa RJS, Laing SJ et al (2009) One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol 107:155–161

    Article  PubMed  Google Scholar 

  • Pugh LGCE (1966) Accidental hypothermia in walkers, climbers, and campers: report to the medical commission on accident prevention. Br Med J 1:123–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19:531–533

    CAS  PubMed  Google Scholar 

  • Rintamäki H (2000) Predisposing factors and prevention of frostbite. Int J Circumpolar Health 59:114–121

    PubMed  Google Scholar 

  • Savourey G, Bittel J (1994) Cold thermoregulatory changes induced by sleep deprivation in men. Eur J Appl Physiol 69:216–220

    Article  CAS  Google Scholar 

  • Thompson-Torgerson CS, Holowatz LA, Kenney WL (2008) Altered mechanisms of thermoregulatory vasoconstriction in aged human skin. Exerc Sport Sci Rev 36:122–127

    Article  PubMed Central  PubMed  Google Scholar 

  • Todorovic V, Micklewright A (2004) The parenteral and enteral nutrition group of British Dietetics Association: a pocket guide to clinical nutrition. British Dietetics Association, pp 1–12

  • Van Someren EJW (2006) Mechanisms and functions of coupling between sleep and temperature rhythms. Prog Brain Res 153:309–324

    Article  PubMed  Google Scholar 

  • Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Young AJ, Sawka MN, Neufer PD et al (1989) Thermoregulation during cold water immersion is unimpaired by low muscle glycogen levels. J Appl Physiol 66:1809–1816

    CAS  PubMed  Google Scholar 

  • Young A, Castellani J, O’Brien C et al (1998) Exertional fatigue, sleep loss, and negative energy balance increase susceptibility to hypothermia. J Appl Physiol 85:1210–1217

    CAS  PubMed  Google Scholar 

  • Zafren K, Giesbrecht GG, Danzl DF et al (2014) Wilderness Medical Society practice guidelines for the out-of-hospital evaluation and treatment of accidental hypothermia. Wilderness Environ Med 25:S86–S95

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Headquarters Army Recruiting and Training Division, Upavon, UK, for supporting the study.

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Oliver.

Additional information

Communicated by George Havenith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver, S.J., Harper Smith, A.D., Costa, R.J.S. et al. Two nights of sleep deprivation with or without energy restriction does not impair the thermal response to cold. Eur J Appl Physiol 115, 2059–2068 (2015). https://doi.org/10.1007/s00421-015-3184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3184-y

Keywords

Navigation