Skip to main content
Log in

The physiological responses to repeated upper-body sprint exercise in highly trained athletes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To study performance, physiological and biomechanical responses during repeated upper-body sprint exercise.

Methods

Twelve male elite cross-country skiers performed eight 8-s maximal poling sprints with a 22-s recovery while sitting on a modified SkiErg poling ergometer. Force, movement velocity, cycle rate, work per cycle, oxygen saturation in working muscles and pulmonary oxygen uptake were measured continuously. A 3-min all-out ergometer poling test determined VO2peak, and 1 repetition maximum (1RM) strength was determined in a movement-specific pull-down.

Results

Average sprint power was 281 ± 48 W, with the highest power on the first sprint, a progressive decline in power output over the following four sprints, and a sprint decrement of 11.7 ± 4.1 %. Cycle rate remained unchanged, whereas work per cycle progressively decreased (P < 0.05). m. triceps brachii and m. latissimus dorsi were highly desaturated already after the first sprint (all P < 0.05), whereas the response was delayed for m. biceps brachii and m. vastus lateralis. Correspondingly, increases in VO2 mainly occurred over the first two sprints (P < 0.05) and plateaued at approximately 75 % of VO2peak. 1RM correlated with power during the first four sprints and with average sprint power (r = 0.71–0.80, all P < 0.05), whereas VO2peak correlated with power in the last three sprints (r = 0.60–0.71, all P < 0.05).

Conclusions

The main decrement in upper-body sprint performance was evident in the first five sprints, followed by highly desaturated muscles and a plateau in pulmonary oxygen uptake already after the first 2–3 sprints. While high maximal strength seems important for producing power, aerobic capacity correlates with power in the last sprints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATT:

Adipose tissue thickness

BB:

m. Biceps brachii

CO2 :

Carbon dioxide

F :

Force

FIS:

International Ski Federation

HHb:

Deoxyhemoglobin

LAT:

m. Latissimus dorsi

NIRS:

Near-infrared spectroscopy

O2 :

Oxygen uptake

O2Hb:

Oxyhemoglobin

PCr:

Phosphocreatine

RSA:

Repeated sprint ability

SD:

Standard deviation

SmO2 :

Muscle oxygen saturation

TB:

m. Triceps brachii

tHb:

Total hemoglobin

VL:

m. Vastus lateralis

VO2max :

Maximal oxygen uptake

VO2peak :

Peak oxygen uptake

W :

Work

1RM:

1 Repetition maximum

Δl :

Average displacement

References

  • Balsom PD, Seger JY, Sjodin B, Ekblom B (1992) Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med 13(7):528–533. doi:10.1055/s-2007-1021311

    Article  CAS  PubMed  Google Scholar 

  • Balsom PD, Gaitanos GC, Soderlund K, Ekblom B (1999) High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand 165(4):337–345

    Article  CAS  PubMed  Google Scholar 

  • Billaut F, Buchheit M (2013) Repeated-sprint performance and vastus lateralis oxygenation: effect of limited O(2) availability. Scand J Med Sci Sports 23(3):e185–e193. doi:10.1111/sms.12052

    Article  CAS  PubMed  Google Scholar 

  • Bishop D, Lawrence S, Spencer M (2003) Predictors of repeated-sprint ability in elite female hockey players. J Sci Med Sport 6(2):199–209

    Article  CAS  PubMed  Google Scholar 

  • Bishop D, Girard O, Mendez-Villanueva A (2011) Repeated-sprint ability—part II: recommendations for training. Sports Med 41(9):741–756. doi:10.2165/11590560-000000000-00000

    Article  PubMed  Google Scholar 

  • Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM (1995) Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol 482:467–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buchheit M (2012) Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sports Med 33(3):230–239. doi:10.1055/s-0031-1291364

    Article  CAS  PubMed  Google Scholar 

  • Buchheit M, Bishop D, Haydar B, Nakamura FY, Ahmaidi S (2010) Physiological responses to shuttle repeated-sprint running. Int J Sports Med 31(6):402–409. doi:10.1055/s-0030-1249620

    Article  CAS  PubMed  Google Scholar 

  • Calbet JA, Holmberg HC, Rosdahl H, van Hall G, Jensen-Urstad M, Saltin B (2005) Why do arms extract less oxygen than legs during exercise? Am J Physiol Regul Integr Comp Physiol 289(5):R1448–R1458. doi:10.1152/ajpregu.00824.2004

    Article  CAS  PubMed  Google Scholar 

  • Dawson B, Fitzsimons M, Ward D (1993) The relationship of repeated sprinting ability to aerobic power and performance measures of anaerobic capacity and power. Aus J Sci Med Sports 25:88–93

    Google Scholar 

  • Duncan A, Meek JH, Clemence M, Elwell CE, Fallon P, Tyszczuk L, Cope M, Delpy DT (1996) Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatr Res 39(5):889–894. doi:10.1203/00006450-199605000-00025

    Article  CAS  PubMed  Google Scholar 

  • Dupont G, Millet GP, Guinhouya C, Berthoin S (2005) Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol 95(1):27–34. doi:10.1007/s00421-005-1382-8

    Article  CAS  PubMed  Google Scholar 

  • Edge J, Hill-Haas S, Goodman C, Bishop D (2006) Effects of resistance training on H+ regulation, buffer capacity, and repeated sprints. Med Sci Sports Exerc 38(11):2004–2011. doi:10.1249/01.mss.0000233793.31659.a3

    Article  PubMed  Google Scholar 

  • Ferrari M, Wei Q, Carraresi L, De Blasi RA, Zaccanti G (1992) Time-resolved spectroscopy of the human forearm. J Photochem Photobiol B 16(2):141–153

    Article  CAS  PubMed  Google Scholar 

  • Forbes SC, Chilibeck PD, Craven B, Bhambhani Y (2010) Comparison of a double poling ergometer and field test for elite cross country sit skiers. N Am J Sports Phys Ther 5(2):40–46

    PubMed Central  PubMed  Google Scholar 

  • Fukuoka Y, Endo M, Kagawa H, Itoh M, Nakanishi R (2002) Kinetics and steady-state of VO2 responses to arm exercise in trained spinal cord injury humans. Spinal Cord 40(12):631–638. doi:10.1038/sj.sc.3101383

    Article  CAS  PubMed  Google Scholar 

  • Gaitanos GC, Williams C, Boobis LH, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75(2):712–719

    CAS  PubMed  Google Scholar 

  • Girard O, Mendez-Villanueva A, Bishop D (2011) Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med 41(8):673–694. doi:10.2165/11590550-000000000-00000

    Article  PubMed  Google Scholar 

  • Glaister M (2005) Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med 35(9):757–777

    Article  PubMed  Google Scholar 

  • Glaister M (2008) Multiple-sprint work: methodological, physiological, and experimental issues. Int J Sports Physiol Perform 3(1):107–112

    PubMed  Google Scholar 

  • Hawkeswood J, Finlayson H, O’Connor R, Anton H (2011) A pilot survey on injury and safety concerns in international sledge hockey. Int J Sports Phys Ther 6(3):173–185

    PubMed Central  PubMed  Google Scholar 

  • Ihsan M, Abbiss CR, Lipski M, Buchheit M, Watson G (2013) Muscle oxygenation and blood volume reliability during continuous and intermittent running. Int J Sports Med 34(7):637–645. doi:10.1055/s-0032-1331771

    Article  CAS  PubMed  Google Scholar 

  • Ingjer F (1991) Maximal oxygen uptake as a predictor of performance ability in woman and man elite cross-country skiers. Scand J Med Sci Sports 1(1):25–30

    Article  Google Scholar 

  • Jones B, Hesford CM, Cooper CE (2013) The use of portable NIRS to measure muscle oxygenation and haemodynamics during a repeated sprint running test. Adv Exp Med Biol 789:185–191. doi:10.1007/978-1-4614-7411-1_26

    Article  CAS  PubMed  Google Scholar 

  • Koppo K, Bouckaert J, Jones AM (2002) Oxygen uptake kinetics during high-intensity arm and leg exercise. Respir Physiol Neurobiol 133(3):241–250

    Article  PubMed  Google Scholar 

  • Livera LN, Spencer SA, Thorniley MS, Wickramasinghe YA, Rolfe P (1991) Effects of hypoxaemia and bradycardia on neonatal cerebral haemodynamics. Arch Dis Child 66(4 Spec No):376–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Losnegard T, Mikkelsen K, Ronnestad BR, Hallen J, Rud B, Raastad T (2011) The effect of heavy strength training on muscle mass and physical performance in elite cross country skiers. Scand J Med Sci Sports 21(3):389–401. doi:10.1111/j.1600-0838.2009.01074.x

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Villanueva A, Hamer P, Bishop D (2008) Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol 103(4):411–419. doi:10.1007/s00421-008-0723-9

    Article  PubMed  Google Scholar 

  • Mendez-Villanueva A, Edge J, Suriano R, Hamer P, Bishop D (2012) The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS One 7(12):e51977. doi:10.1371/journal.pone.0051977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patterson MS, Chance B, Wilson BC (1989) Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl Opt 28(12):2331–2336. doi:10.1364/AO.28.002331

    Article  CAS  PubMed  Google Scholar 

  • Perrey S, Racinais S, Saimouaa K, Girard O (2010) Neural and muscular adjustments following repeated running sprints. Eur J Appl Physiol 109(6):1027–1036. doi:10.1007/s00421-010-1445-3

    Article  PubMed  Google Scholar 

  • Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S (2007) Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Med Sci Sports Exerc 39(2):268–274. doi:10.1249/01.mss.0000251775.46460.cb

    Article  PubMed  Google Scholar 

  • Sandbakk O, Spencer M, Ettema G, Sandbakk SB, Skovereng K, Welde B (2014) The physiology and biomechanics of upper-body repeated sprints in ice sledge hockey. Int J Sports Physiol Perform 9(1):77–84. doi:10.1123/ijspp.2012-0355

    Article  PubMed  Google Scholar 

  • Smith KJ, Billaut F (2010) Influence of cerebral and muscle oxygenation on repeated-sprint ability. Eur J Appl Physiol 109(5):989–999. doi:10.1007/s00421-010-1444-4

    Article  PubMed  Google Scholar 

  • Smith KJ, Billaut F (2012) Tissue oxygenation in men and women during repeated-sprint exercise. Int J Sports Physiol Perform 7(1):59–67

    PubMed  Google Scholar 

  • Spencer M, Bishop D, Dawson B, Goodman C (2005) Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med 35(12):1025–1044

    Article  PubMed  Google Scholar 

  • Spencer M, Bishop D, Dawson B, Goodman C, Duffield R (2006a) Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exerc 38(8):1492–1499. doi:10.1249/01.mss.0000228944.62776.a7

    Article  PubMed  Google Scholar 

  • Spencer M, Fitzsimons M, Dawson B, Bishop D, Goodman C (2006b) Reliability of a repeated-sprint test for field-hockey. J Sci Med Sport 9(1–2):181–184. doi:10.1016/j.jsams.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  • Spencer M, Dawson B, Goodman C, Dascombe B, Bishop D (2008) Performance and metabolism in repeated sprint exercise: effect of recovery intensity. Eur J Appl Physiol 103(5):545–552. doi:10.1007/s00421-008-0749-z

    Article  CAS  PubMed  Google Scholar 

  • Stoggl T, Lindinger S, Muller E (2006a) Biomechanical validation of a specific upper body training and testing drill in cross-country skiing. Sports Biomech 5(1):23–46. doi:10.1080/14763141.2006.9628223

    Article  PubMed  Google Scholar 

  • Stoggl T, Lindinger S, Muller E (2006b) Reliability and validity of test concepts for the cross-country skiing sprint. Med Sci Sports Exerc 38(3):586–591. doi:10.1249/01.mss.0000190789.46685.22

    Article  PubMed  Google Scholar 

  • Stoggl T, Lindinger S, Muller E (2007) Evaluation of an upper-body strength test for the cross-country skiing sprint. Med Sci Sports Exerc 39(7):1160–1169. doi:10.1249/mss.0b013e3180537201

    Article  PubMed  Google Scholar 

  • Tesch PA (1983) Physiological characteristics of elite kayak paddlers. Can J Appl Sport Sci 8(2):87–91

    CAS  PubMed  Google Scholar 

  • Ufland P, Ahmaidi S, Buchheit M (2013) Repeated-sprint performance, locomotor profile and muscle oxygen uptake recovery: effect of training background. Int J Sports Med 34(10):924–930. doi:10.1055/s-0033-1333719

    Article  CAS  PubMed  Google Scholar 

  • Uzun S, Pourmoghaddam A, Hieronymus M, Thrasher TA (2012) Evaluation of muscle fatigue of wheelchair basketball players with spinal cord injury using recurrence quantification analysis of surface EMG. Eur J Appl Physiol 112(11):3847–3857. doi:10.1007/s00421-012-2358-0

    Article  CAS  PubMed  Google Scholar 

  • Van Beekvelt MC, Colier WN, Wevers RA, Van Engelen BG (2001) Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle. J Appl Physiol (1985) 90(2):511–519

    Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Mid-Norway Department of the Norwegian Olympic Committee. We would like to thank Xiangchun Tan, Knut Skovereng and Mads Hansen for help in the laboratory and the participants for their participation in this study. The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind Sandbakk.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandbakk, Ø., Skålvik, T.F., Spencer, M. et al. The physiological responses to repeated upper-body sprint exercise in highly trained athletes. Eur J Appl Physiol 115, 1381–1391 (2015). https://doi.org/10.1007/s00421-015-3128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3128-6

Keywords

Navigation