Skip to main content
Log in

Autonomic modulations of heart rate variability and performances in short-distance elite swimmers

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Endurance exercise is associated with high cardiac vagal tone, but how the cardiac autonomic control correlates with shorter anaerobic performances is unknown. Therefore, the aim of this study was to evaluate how autonomic modulations of heart rate (HR) variability (V) correlate with performances of short- (<1 min) and very short (<30 s) duration in elite athletes.

Method

Thirteen male swimmers, national-level crawl specialists in short (100-m) and very short (50-m) distances, were enrolled. HR was recorded during 15-min supine rest: (1) in the morning after wake up, (2) in the afternoon before sprint-oriented training sessions, (3) few minutes after training (first recovery phase after swimming cooldown). Heart rate variability (HRV) vagal and sympatho/vagal indices were calculated in time, frequency and complexity domains. Correlations of best seasonal times on 100- or 50-m distances with HRV indices and the velocity at blood lactate accumulation onset (V OBLA) were calculated.

Results and conclusion

Vagal indices were highest in the morning where they positively correlated with very short-distance times (higher the index, worse is the 50-m performance). Sympatho/vagal indices were highest after training where they negatively correlated with short-distance times (higher the index, better is the 100-m performance). V OBLA did not correlate with the performances. Therefore, autonomic HRV indices and not V OBLA predict short and very short, most anaerobic, performances. Results also suggest that a strong cardiac vagal control has no effect on short performances and is even detrimental to very short performances, and that the capacity to powerfully increase the sympathetic tone during exercise may improve short, but not very short performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HF:

High-frequency power

HR:

Heart rate

HRV:

Heart rate variability

LFnu :

Normalized low-frequency power

NN:

Normal-to-normal R–R intervals

NN50+:

Hourly number of increases between consecutive NN intervals larger than 50 ms

NN50−:

Hourly number of decreases between consecutive NN intervals larger than 50 ms

pNN50+:

Proportion of beats with increases larger than 50 ms

pNN50−:

Proportion of beats with decreases lower than 50 ms

SampEn:

Sample entropy

SD1 :

Dispersion of Poincarè plots around the identity line

V OBLA :

Velocity at the onset of blood lactate accumulation

References

  • Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ, Colucci WS (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol 256:H132–H141

    CAS  PubMed  Google Scholar 

  • Atlaoui D, Pichot V, Lacoste L, Barale F, Lacour JR, Chatard JC (2007) Heart rate variability, training variation and performance in elite swimmers. Int J Sports Med 28:394–400

    Article  CAS  PubMed  Google Scholar 

  • Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33:889–919

    Article  PubMed  Google Scholar 

  • Bauer A, Kantelhardt JW, Barthel P, Schneider R, Makikallio T, Ulm K, Hnatkova K, Schomig A, Huikuri H, Bunde A, Malik M, Schmidt G (2006) Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367:1674–1681

    Article  PubMed  Google Scholar 

  • Bigger JT Jr, Kleiger RE, Fleiss JL, Rolnitzky LM, Steinman RC, Miller JP (1988) Components of heart rate variability measured during healing of acute myocardial infarction. Am J Cardiol 61:208–215

    Article  PubMed  Google Scholar 

  • Bonifazi M, Martelli G, Marugo L, Sardella F, Carli G (1993) Blood lactate accumulation in top level swimmers following competition. J Sports Med Phys Fitness 33:13–18

    CAS  PubMed  Google Scholar 

  • Bosquet L, Merkari S, Arvisais D, Aubert AE (2008) Is heart rate a convenient tool to monitor over-reaching? A systematic review of the literature. Br J Sports Med 42:709–714

    Article  CAS  PubMed  Google Scholar 

  • Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48:1342–1347

    Article  CAS  PubMed  Google Scholar 

  • Brennan M, Palaniswami M, Kamen P (2002) Poincare plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol 283:H1873–H1886

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni P, Parati G, Omboni S, Mancia G, Imholz BP, Wesseling KH, Di Rienzo M (1999) Broad-band spectral analysis of 24 h continuous finger blood pressure: comparison with intra-arterial recordings. Clin Sci (Lond) 97:129–139

    Article  CAS  Google Scholar 

  • Castiglioni P, Parati G, Civijian A, Quintin L, Di Rienzo M (2009) Local scale exponents of blood pressure and heart rate variability by detrended fluctuation analysis: effects of posture, exercise, and aging. IEEE Trans Biomed Eng 56:675–684

    Article  PubMed  Google Scholar 

  • Castiglioni P, Parati G, Di Rienzo M, Carabalona R, Cividjian A, Quintin L (2011a) Scale exponents of blood pressure and heart rate during autonomic blockade as assessed by detrended fluctuation analysis. J Physiol 589:355–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castiglioni P, Parati G, Lombardi C, Quintin L, Di Rienzo M (2011b) Assessing the fractal structure of heart rate by the temporal spectrum of scale exponents: a new approach for detrended fluctuation analysis of heart rate variability. Biomed Tech (Berl) 56:175–183

    Article  Google Scholar 

  • Di Rienzo M, Castiglioni P, Mancia G, Parati G, Pedotti A (1989) 24 h sequential spectral analysis of arterial blood pressure and pulse interval in free-moving subjects. IEEE Trans Biomed Eng 36:1066–1075

    Article  PubMed  Google Scholar 

  • Dixon EM, Kamath MV, McCartney N, Fallen EL (1992) Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc Res 26:713–719

    Article  CAS  PubMed  Google Scholar 

  • Ekblom B, Kilbom A, Soltysiak J (1973) Physical training, bradycardia, and autonomic nervous system. Scand J Clin Lab Invest 32:251–256

    Article  CAS  PubMed  Google Scholar 

  • Ewing DJ, Neilson JM, Travis P (1984) New method for assessing cardiac parasympathetic activity using 24 hour electrocardiograms. Br Heart J 52:396–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faude O, Meyer T, Scharhag J, Weins F, Urhausen A, Kindermann W (2008) Volume vs. intensity in the training of competitive swimmers. Int J Sports Med 29:906–912

    Article  CAS  PubMed  Google Scholar 

  • Furlan R, Piazza S, Dell’Orto S, Gentile E, Cerutti S, Pagani M, Malliani A (1993) Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc Res 27:482–488

    Article  CAS  PubMed  Google Scholar 

  • Garet M, Tournaire N, Roche F, Laurent R, Lacour JR, Barthelemy JC, Pichot V (2004) Individual Interdependence between nocturnal ANS activity and performance in swimmers. Med Sci Sports Exerc 36:2112–2118

    Article  PubMed  Google Scholar 

  • Goldsmith RL, Bigger JT Jr, Bloomfield DM, Steinman RC (1997) Physical fitness as a determinant of vagal modulation. Med Sci Sports Exerc 29:812–817

    Article  CAS  PubMed  Google Scholar 

  • Iellamo F, Legramante JM, Pigozzi F, Spataro A, Norbiato G, Lucini D, Pagani M (2002) Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes. Circulation 105:2719–2724

    Article  PubMed  Google Scholar 

  • Kasikcioglu E (2011) The incognita of the known: the athlete’s heart syndrome. Anadolu Kardiyol Derg 11:351–359

    PubMed  Google Scholar 

  • Laursen PB (2010) Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports 20(Suppl 2):1–10

    Article  PubMed  Google Scholar 

  • McNarry MA, Lewis MJ (2012) Interaction between age and aerobic fitness in determining heart rate dynamics. Physiol Meas 33:901–914

    Article  CAS  PubMed  Google Scholar 

  • Nobrega AC, O’Leary D, Silva BM, Marongiu E, Piepoli MF, Crisafulli A (2014) Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. Biomed Res Int 2014:478965

    Article  PubMed Central  PubMed  Google Scholar 

  • Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE, Goldberger AL (1995) Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J Electrocardiol 28:59–65

    Article  PubMed  Google Scholar 

  • Penttila J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, Coffeng R, Scheinin H (2001) Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol 21:365–376

    Article  CAS  PubMed  Google Scholar 

  • Pichot V, Roche F, Gaspoz JM, Enjolras F, Antoniadis A, Minini P, Costes F, Busso T, Lacour JR, Barthelemy JC (2000) Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc 32:1729–1736

    Article  CAS  PubMed  Google Scholar 

  • Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N (2007) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103:1143–1149

    Article  PubMed  Google Scholar 

  • Porta A, Casali KR, Casali AG, Gnecchi-Ruscone T, Tobaldini E, Montano N, Lange S, Geue D, Cysarz D, Van Leeuwen P (2008) Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am J Physiol Regul Integr Comp Physiol 295:R550–R557

    Article  CAS  PubMed  Google Scholar 

  • Pu Y, Patterson RP (2003) Comparison of R-wave detection errors of four wireless heart rate belts in the presence of noise. Physiol Meas 24:913–924

    Article  PubMed  Google Scholar 

  • Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049

    CAS  PubMed  Google Scholar 

  • Schmitt L, Hellard P, Millet GP, Roels B, Richalet JP, Fouillot JP (2006) Heart rate variability and performance at two different altitudes in well-trained swimmers. Int J Sports Med 27:226–231

    Article  CAS  PubMed  Google Scholar 

  • Shiotani H, Umegaki Y, Tanaka M, Kimura M, Ando H (2009) Effects of aerobic exercise on the circadian rhythm of heart rate and blood pressure. Chronobiol Int 26:1636–1646

    Article  PubMed  Google Scholar 

  • Tarvainen MP & Niskanen JP (2012). Kubios HRV 2.1 User’s Guide, University of Eastern Finland, Kuopio, Finland

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  • Tulppo MP, Makikallio TH, Seppanen T, Shoemaker K, Tutungi E, Hughson RL, Huikuri HV (2001) Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clin Physiol 21:515–523

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm M, Roten L, Tanner H, Wilhelm I, Schmid JP, Saner H (2011) Atrial remodeling, autonomic tone, and lifetime training hours in nonelite athletes. Am J Cardiol 108:580–585

    Article  PubMed  Google Scholar 

  • Zamparo P, Capelli C, Pendergast D (2011) Energetics of swimming: a historical perspective. Eur J Appl Physiol 111:367–378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank all the DDS athletes who participated in the study and their medical manager, Dr. F. Confalonieri, for the patience and courtesy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Anna Maggioni.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merati, G., Maggioni, M.A., Invernizzi, P.L. et al. Autonomic modulations of heart rate variability and performances in short-distance elite swimmers. Eur J Appl Physiol 115, 825–835 (2015). https://doi.org/10.1007/s00421-014-3064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3064-x

Keywords

Navigation